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Central and non-central limit theorems
General framework:

Let X = (Xi)i∈N be a centered stationary Gaussian sequence
with variance 1, and ρ(i − j) = E [XiXj ] be its covariance kernel.

Let g ∈ L2(R, 1√
2π
e−

x2

2 dx) such that
∫
R g(x)e−

x2

2 dx = 0, i.e.,

g(x) =
∞∑
k=q

ckHk(x)

where q ≥ 1, aq 6= 0. Here q is called the Hermite rank of g and
Hk is the k-th Hermite polynomial
H1(x) = x ,H2(x) = x2 − 1,H3(x) = x3 − 3x , ....

Question:
[Nt]∑
i=1

g(Xi) −→??? as n→∞, t ≥ 0
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Central and non-central limit theorems
1 Central limit theorem (Breuer-Major): When X has short-range

dependence (i.e.,
∑

n∈Z |ρ(n)|q <∞), then for all q ≥ 1:

1√
N

[Nt]∑
i=1

g(Xi)
f .d .d−−−→ Brownian motion

2 Non-central limit theorem (Dobrushin-Major-Taqqu): When X
has long-range dependence (i.e.,

∑
n∈Z |ρ(n)|q =∞). Particular,

ρ(n) = E [X0Xn] = n2H0−2L(n) for some H0 ∈ (1− 1
2q
, 1) and L a

slowly varying function. Then,

1

NH

[Nt]∑
i=1

g(Xi)
f .d .d−−−→ Hermite process Z q,H

We have CLT for q = 1, limit behaviour Z 1,H is the well-known
fractional Brownian motion
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Fractional Brownian motion

Definition
Let H ∈ (0, 1]. A fractional Brownian motion (fBm in short) of Hurst
parameter H is a centered continuous Gaussian process
BH = (BH

t )t≥0 with covariance function

E [BH
t B

H
s ] =

1

2
(t2H + s2H − |t − s|2H).

If H = 1
2
, that means B

1
2 , is a classical Brownian motion.

If H = 1, then BH
t = tBH

1 almost surely for all t ≥ 0.

Since H = 1 is trivial, we always assume H ∈ (0, 1).

I. Nourdin (2012): Selected aspects of fractional Brownian motion.
Bocconi and Springer Series, 4. Springer.
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Basic properties

Proposition

(i) Self-similarity: for all a > 0, (a−HBH
at)t≥0

law
= (BH

t )t≥0

(ii) Stationary increments: for all h > 0, (BH
t+h − BH

h )t≥0
law
= (BH

t )t≥0

(iii) Long-range dependence H > 1
2
:
∑∞

n=1 E [BH
1 (BH

n+1 − BH
n )] =∞

(iv) Hölder continuity: the sample paths of BH are α-Hölder
continuous on each compact set for any α ∈ (0,H).

(v) fBm is neither a semimartingale nor a Markov process, except
when its Hurst parameter is 1

2
(that means, Brownian motion)

(vi) fBm has the form of a Volterra process, i.e., can be represented
as BH

t =
∫ t

0
KH(t, s)dWs , where W = (Wt)t≥0 is classical

Brownian motion and KH is an explicit square integrable kernel.
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Hermite processes in a nutshell

V. Pipiras, M. Taqqu (2017): Long-range dependence and
self-similarity. Cambridge series in statistical and probabilistic
mathematics. Cambridge University Press, Cambridge.

C.A. Tudor (2013): Analysis of variations for self-similar processes: A
stochastic calculus approach. Probability and its Applications.
Springer.
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Where do Hermite processes come from ?
Hermite processes appeared for the first time in a non-CLT proved by
Taqqu (1975, 1979) and Dobrushin and Major (1979).

Recall, assume that:

g belongs to L2(R, 1√
2π
e−

x2

2 dx) and satisfies
∫
R g(x)e−

x2

2 dx = 0

(that is, g(x) =
∑∞

k=q ckHk(x) where Hk denotes the k-th
Hermite polynomial and q is the Hermite rank of g)

X = (Xi)i∈Z is a centered stationary Gaussian seq. with variance
1, satisfying E [X0Xn] = n2H0−2L(n) for some H0 ∈ (1− 1

2q
, 1)

and L a slowly varying function.

Then,

1

NH

[Nt]∑
i=1

g(Xi)
f .d .d−−−→ ”Hermite process Z q,H

t ”.

Here H = q(H0 − 1) + 1 belongs to (1
2
, 1) for all q ≥ 1.
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Multiple Wiener-Itô integrals and Wiener chaos
Let B = B(h), h ∈ L2(R) be a Brownian field defined on a probability
space (Ω,F ,P) satisfying E [B(h)B(g)] = 〈h, g〉L2(R), ∀h, g ∈ L2(R).

For every q ≥ 1, the qth Wiener chaos HB
q is defined as the closed

linear subspace of L2(Ω) generated by the family of random variables

{Hq(B(h)), h ∈ L2(R), ‖h‖L2(R) = 1}

The mapping IBq (h⊗q) = Hq(B(h)) can be extended to a linear
isometry between L2s (Rq) and the qth Wiener chaos HB

q .
When f ∈ L2s (Rq), the random variable IBq (f ) is called the multiple
Wiener-Itô integral of f of order q. One may write

IBq (f ) =

∫
Rq

f (ξ1, . . . , ξp)dBξ1 . . . dBξp
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Multiple Wiener-Itô integrals

For any f ∈ L2s (Rp) and g ∈ L2s (Rq), we have

Orthogonality - Isometry:

E [IBp (f )IBq (g)] =

{
p!
〈
f , g
〉
L2(Rp)

if p = q

0 if p 6= q.

Hypercontractivity: (All Lk-norms are equivalent)

E [|IBp (f )|k ]1/k ≤ (k − 1)p/2E [|IBp (f )|2]1/2 for any k ∈ [2,∞).

See D. Nualart (2006): The Malliavin calculus and related topics.
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Hermite process viewed as a multiple Wiener-Itô

integral
Definition

The Hermite process (Z q,H
t )t≥0 of order q ≥ 1 and self-similarity

parameter H ∈ (1
2
, 1) is defined as

Z q,H
t = c(H , q)

∫
Rq

(∫ t

0

q∏
j=1

(s − ξj)
H0− 3

2
+ ds

)
dBξ1 . . . dBξq , (1)

where (Bt)t∈R is a two-sided standard Brownian motion and

c(H , q) =

√
H(2H − 1)

q!βq(H0 − 1
2
, 2− 2H0)

;H0 = 1+
H − 1

q
∈
(

1− 1

2q
, 1

)
.

(2)
Here c(H , q) is calculated to ensure that E [(Z q,H

1 )2] = 1.
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Hermite random variable
Hermite process of order q = 1 is nothing but the fractional
Brownian motion. fBm is the only Hermite process to be Gaussian
(and that one could have defined for H ≤ 1

2
as well).

Definition

A random variable which has the same law as Z q,H
1 is called a

Hermite random variable of order q and parameter H .

Hermite process of order q = 2 is called the Rosenblatt process.
Denoted by RH = (RH

t )t≥0.

Definition
A random variable which has the same law as RH

1 is called a
Rosenblatt random variable of parameter H .
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Properties of Hermite processes

The Hermite process Z q,H shares many properties with the fBm
(corresponding to q = 1), EXCEPT GAUSSIANITY (for q ≥ 2).

Self-similarity

For all c > 0, (Z q,H
ct )t≥0

law
= (cHZ q,H

t )t≥0.

Stationarity of increments

For any h > 0, (Z q,H
t+h − Z q,H

h )t≥0
law
= (Z q,H

t )t≥0.

Covariance function
For all s, t ≥ 0, E [Z q,H

t Z q,H
s ] = 1

2
(t2H + s2H − |t − s|2H).

Long-range dependence
∑

n≥1 |E [Z q,H
1 (Z q,H

n+1 − Z q,H
n )]| =∞.

Hölder continuity Z q,H admits a version with Hölder continuous
sample paths of any order β ∈ (0,H) on any compact interval.

Finite moments
For every p ≥ 1, t ≥ 0, E [|Z q,H

t |p] ≤ Cp,qt
pH .
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Small digression: a mysterious conjecture on

Rosenblatt distribution
Unfortunately, the explicit distribution of Rosenblatt random variable
is not known (only numerical approximations are available).
Mysterious conjecture (Taqqu and Veillette 2013): whatever the
value of H , it seems that

P(RH
1 ≤ −0.6256) = 0.2658,

P(RH
1 ≤ 1.3552) = 0.9123.
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Wiener integrals with respect to Hermite process

∫
R f (u)dZ q,H

u is well-defined for any f : R→ R such that∫
R

∫
R
|f (u)f (v)||u − v |2H−2dudv <∞.

Isometry f 7−→
∫
R f (u)dZ q,H

u :

E

[ ∫
R
f (u)dZ q,H

u

∫
R
g(v)dZ q,H

v

]
= H(2H − 1)

∫
R

∫
R
f (u)g(v)|u − v |2H−2dudv .
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Wiener integrals with respect to Hermite process
It can be expressed as a multiple Wiener-Itô integral∫
R
f (u)dZ q,H

u = c(H , q)

∫
Rq

(∫
R
f (u)

q∏
j=1

(u−ξj)
H0− 3

2
+ du

)
dBξ1 . . . dBξq ,

with c(H , q) and H0 given in (2).
Choosing f (u) = 1[0,t](u), then∫

R
1[0,t](u)dZ q,H

u

= c(H , q)

∫
Rq

(∫
R
1[0,t](u)

q∏
j=1

(u − ξj)
H0− 3

2
+ du

)
dBξ1 . . . dBξq

= c(H , q)
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Vasicek-type model driven by Hermite processes -

Motivation

The (non-stationary) fractional Vasicek process is the unique
strong solution of the Langevin equation driven by the fractional
Brownian motion BH

X0 = 0, dXt = a(b − Xt)dt + σdBH
t , t ≥ 0, (3)

Here a > 0, b ∈ R are real drift parameters and σ > 0 is the
volatility of the model.

When b = 0, X is a fractional Ornstein-Uhlenbeck process

The fractional Vasicek model has received a lot of attention,
because of its potential for modelling purpose and since one can
use the powerful toolbox of Gaussian analysis to deal with it.
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Motivation

But in some situation, the Gaussian assumption may be
implausible. For example in hydrology when we would like to
analyze river-flow time series.

This is why we propose to look at a non-Gaussian extension:

dXt = a(b − Xt)dt + σdZ q,H
t , X0 = 0.

Here Z q,H stands for a Hermite process.
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Vasicek-type model driven by Hermite processes

The (non-stationary) Vasicek-type model driven by Hermite processes
is the unique (pathwise) solution of the Langevin equation driven by
Hermite process Z q,H

dXt = a(b − Xt)dt + σdZ q,H
t , X0 = 0. (4)

It is easily shown that the solution of (4) is given by

Xt = b(1− e−at) + σ

∫ t

0

e−a(t−u)dZ q,H
u .

The choice q = 1 in (4) corresponds to fractional Vasicek model.
When b = 0, one gets Hermite Ornstein-Uhlenbeck process.
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Problem we have looked at:

Recall (4): dXt = a(b − Xt)dt + σdZ q,H
t .

Here H ∈ (1
2
, 1), σ are known (assume σ = 1), a and b are unknown.

Construct estimators for a and b.

Study their asymptotic properties (their consistency as well as
their fluctuations around the true value of the parameter) based
on a continuous-time observation of X .

Do our estimators for a and b have the same asymptotic
behavior when q = 1 (fBm case, fractional model (3)) and
q ≥ 2 (non-Gaussian case, model (4))?

Answering this question is equivalent to understand whether the
Gaussian feature of the fBm really matters when estimating the
unknown parameters in the fractional Vasicek model (3) .
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Estimators for drift parameters
Recall (4): dXt = a(b − Xt)dt + dZ q,H

t , X0 = 0.
Strong solution:

Xt = b(1− e−at) +

∫ t

0

e−a(t−s)dZ q,H
s .

Assume: q ≥ 1,H ∈ (1
2
, 1) are known; a > 0 and b ∈ R are unknown.

Definition
We define estimators for drift parameters a and b in (4) as follows:

âT =

(
αT

HΓ(2H)

)− 1
2H

, where αT =
1

T

∫ T

0

X 2
t dt −

(
1

T

∫ T

0

Xtdt

)2

,

b̂T =
1

T

∫ T

0

Xtdt. (5)
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Strong consistency of the estimators

Theorem
For any q ≥ 1 and any H ∈ (1

2
, 1), we have, as T →∞

(âT , b̂T )
a.s.→ (a, b).

The proof of this theorem relies on the following proposition.

Proposition

For all q ≥ 1 and H ∈ (1
2
, 1), one has, as T →∞

1

T

∫ T

0

Xtdt
a.s.→ b (6)

1

T

∫ T

0

X 2
t dt

a.s.→ b2 + a−2HHΓ(2H). (7)
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(âT , b̂T )
a.s.→ (a, b).

The proof of this theorem relies on the following proposition.

Proposition

For all q ≥ 1 and H ∈ (1
2
, 1), one has, as T →∞

1

T

∫ T

0

Xtdt
a.s.→ b (6)

1

T

∫ T

0

X 2
t dt

a.s.→ b2 + a−2HHΓ(2H). (7)

Diu Tran 23 / 32



Key steps of the proof of strong consistency

Xt = h(t) + Yt where h(t) = b(1− e−at),Yt =
∫ t

0
e−a(t−u)dZ q,H

u .

Proof (6): We write

1

T

∫ T

0

Xtdt =
b

T

∫ T

0

(1− e−at)dt +
1

T

∫ T

0

Ytdt.

Check that b
T

∫ T

0
(1− e−at)dt → b (Lebesgue dominated

convergence)

Prove that 1
T

∫ T

0
Ytdt → 0 almost surely

Since 1
T

∫ T

0
Ytdt belongs to the qth Wiener chaos, it enjoys the

hypercontractivity property + using Borel-Cantelli lemma to
obtain desired conclusion.
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Proof (7):

1

T

∫ T

0

X 2
t dt =

1

T

∫ T

0

h(t)2dt +
2

T

∫ T

0

h(t)Ytdt +
1

T

∫ T

0

Y 2
t dt.

1 Check 1
T

∫ T

0
h(t)2dt → b2.

2 Prove 1
T

∫ T

0
h(t)Ytdt

a.s→ 0. Hint: T−H
∫ T

0
h(t)Ytdt

law→ b
a
Z q,H
1

3 Show 1
T

∫ T

0
Y 2
t dt

a.s→ a−2HHΓ(2H).
Hint: First, observe that

1

T

∫ T

0

E [Y 2
t ]dt → a−2HHΓ(2H)

Secondly, applying the next following results on quadratic
functional of long memory moving average process (Yt)t≥0
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∫ T

0
h(t)2dt → b2.

2 Prove 1
T

∫ T

0
h(t)Ytdt

a.s→ 0. Hint: T−H
∫ T

0
h(t)Ytdt

law→ b
a
Z q,H
1

3 Show 1
T

∫ T

0
Y 2
t dt

a.s→ a−2HHΓ(2H).
Hint: First, observe that

1

T

∫ T

0

E [Y 2
t ]dt → a−2HHΓ(2H)

Secondly, applying the next following results on quadratic
functional of long memory moving average process (Yt)t≥0
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Proof (7) Recall Yt =
∫ t

0
e−a(t−u)dZ q,H

u . As T →∞, we have

If q ≥ 2 or (q = 1 and H > 3
4
):

T
2
q
(1−H)−1

∫ T

0

(Y 2
t − E [Y 2

t ])dt
law→ Rosenblatt r.v

If q = 1 and H ∈ (1
2
, 3
4
):

T−
1
2

∫ T

0

(Y 2
t − E [Y 2

t ])dt
law→ Standard Gaussian r.v

If q = 1 and H = 3
4

(T log(T ))−
1
2

∫ T

0

(Y 2
t − E [Y 2

t ])dt
law→ Standard Gaussian r.v

The asymptotic behaviour holds for general long memory moving
average processes Yt =

∫ t

0
x(t − u)dZ q,H

u satisfying that∫
R+

∫
R+

|x(u)x(v)||u − v |2H−2dudv <∞.
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Fluctuations of the estimators: non-Gaussian case

Theorem
Let X = (Xt)t≥0 be the unique strong solution to
dXt = a(b − Xt)dt + dZ q,H

t with a > 0, b ∈ R.

For any q ≥ 2 and any H ∈ (1
2
, 1):

(
T

2
q
(1−H){âT − a},T 1−H{b̂T − b}

)
law→

(
− a1−

2
q
(1−H)

2H2Γ(2H)
G∞,

1

a
Z q,H
1

)
,

as T →∞. Here G∞ is distributed according to Rosenblatt
distribution of parameter 1 + (2H − 2)/q up to an explicit constant.
Z q,H
1 is a Hermite random variable (Hermite process evaluated at 1).
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Fluctuations of the estimators: Gaussian case
Theorem
• Case q = 1 and H < 3

4
:

(
√
T{âT − a},T 1−H{b̂T − b}) law→

(
− a1+4HσH

2H2Γ(2H)
N ,

1

a
N ′
)
.

• Case q = 1 and H = 3
4
:

(√
T

logT
{âT − a},T

1
4

{
b̂T − b}

)
law→
(

3

4

√
a

π
N ,

1

a
N ′
)
.

• Case q = 1 and H > 3
4
:

(T 2−2H{âT−a},T 1−H{b̂T−b}) law→
(
−a2H−1

2H2Γ(2H)

(
G∞−(BH

1 )2
)
,

1

a
BH
1

)
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Keys of proof of fluctuations

Proposition (Definition)

Assume either (q = 1 and H > 3
4
) or q ≥ 2. Fix T > 0. Let

UT = (UT (t))t≥0 be a process defined as UT (t) =
∫ t

0
e−T (t−u)dZ q,H

u .
Finally, let GT be the random variable defined as

GT = T
2
q
(1−H)+2H

∫ 1

0

(
UT (t)2 − E [UT (t)2])dt.

Then GT converges in L2(Ω) to a limit written G∞. Moreover,
G∞/BH,q is distributed according to the Rosenblatt distribution of
parameter 1− 2

q
(1− H), where BH,q is an explicit cst.
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Keys of proof of fluctuations

Fluctuations of b̂T

T 1−H{b̂T − b} = T 1−H
{

1

T

∫ T

0

Ytdt −
b

T

∫ T

0

e−atdt

}
=

Z q,H
T

aTH
+ O(T−H)

Fluctuations of âT

T
2
q
(1−H){âT − a}

= − a1+2H

2H2Γ(2H)

(
T

2
q
(1−H)AT − T

2
q
(1−H)−2 (Z q,H

T )2

a2

)
+ o(1),

Where AT = 1
T

∫ T

0
(Y 2

t − E [Y 2
t ])dt
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Keys of proof of fluctuations

Fluctuations of (âT , b̂T )

We consider first the case (q = 1 and H > 3
4
) or (q ≥ 2). Since Z q,H

satisfies the scaling property, we can write(
T

2
q
(1−H)AT ,T

−HZ q,H
T

)
law
=
(
a−

2
q
(1−H)−2H GaT ,Z

q,H
1

)
,

and we deduce from the L2-convergence of GT that(
T

2
q
(1−H)AT ,T

−HZ q,H
T

)
law→
(
a−

2
q
(1−H)−2H G∞,Z

q,H
1

)
.

For the Gaussian case q = 1 and H ∈ (1
2
, 3
4
]: we use the powerful

toolbox of Gaussian analysis to study fluctuation
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We consider first the case (q = 1 and H > 3
4
) or (q ≥ 2). Since Z q,H

satisfies the scaling property, we can write(
T

2
q
(1−H)AT ,T

−HZ q,H
T

)
law
=
(
a−

2
q
(1−H)−2H GaT ,Z

q,H
1

)
,

and we deduce from the L2-convergence of GT that(
T

2
q
(1−H)AT ,T

−HZ q,H
T

)
law→
(
a−

2
q
(1−H)−2H G∞,Z

q,H
1

)
.

For the Gaussian case q = 1 and H ∈ (1
2
, 3
4
]: we use the powerful

toolbox of Gaussian analysis to study fluctuation

Diu Tran 31 / 32



Conclusion

Question: Do our estimators for a and b have the same asymptotic
behavior in case of Gaussian and non-Gaussian (q ≥ 2) or not ?

Answer:

The strong consistency of (âT , b̂T ) is universal for any Vasicek
type model driven by Hermite process as a noise, no matter that
it is Gaussian or not.

The fluctuations of our estimators around the true value of the
drift parameters depend heavily on the order q and Hurst
parameter H of the underlying Hermite process.

This gives us some hints to understand how much the fractional
Vasicek model relies on the Gaussian feature.
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