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Big Data

New types of data are now available: continuous geolocation of car
drivers through the GPS system; facial recognition; price sequences
of financial assets; and the like.

These data are massive (gigabytes of data) and large datasets may
allow for more flexible relationships than simple linear regressions.

They require new statistical methods to analyze the relationship
among these datasets and perform prediction.
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High-dimensionality

High-dimensionality is about the large number of parameters we
would like to estimate.

It concerns variable selection and common feature extraction.

Example Let (yi ,t , i = 1, · · · ,N; t = 1, · · · ,T ) and

yt = Φyt−1 + ut ,

with N: number of variables; T : number of observations;
∀t, ut ∼ NRN (0,Σ).

Parameter vector: β = (vec(Φ)>, vec(Σ)>)>: N2 + N(N + 1)/2
unknown coefficients.

If N > T , then N2 > NT : significant model complexity.
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Let Zt = (y1,t , · · · , yN,t)> and
Y = (Z2, · · · ,ZT ), X = (Z1, · · · ,ZT−1), U = (u2, · · · , uT ).

Dimensions: Y : N × (T − 1), X : N × (T − 1), Φ : N × N.

Regression model: Y = ΦX + U . By OLS

Φ̂ols = (YX>)(XX>)−1.

Problem:

Identifiability: XX> is non-invertible (rank condition).

Overfitting issue.
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Solution 1: Factor modelling

Introduction of factor models (Stock and Watson, 1989):

yt = BAyt−1 + ut = BFt−1 + ut ,

where (Ft) is a much smaller vector than yt . The B matrix
(N × q) contains for example β coefficients (APT).

The vector of interest is β = (vec(B)>, vec(Σ)>)>:
Nq + N(N + 1)/2 unknown coefficients.

Example: Application to the portfolio allocation problem (Fan, J
and al., 2008).
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Solution 2: parameter shrinkage

Let Y v = vec(Y ), X̃ = Z> ⊗ IN ,Uv = vec(U), θ = vec(Φ).

Dimensions: Y v : N(T − 1)× 1, X̃ : N(T − 1)× N2, θ : N2 × 1.

Regression model: Y v = X̃θ + Uv .

Parameter shrinkage (Bayesian approach): constrains the set of
parameter values.

The Ridge method (Hoerl and Kennard, 1970) corresponds to

θ̂ridge = arg min
θ

(Y v − X̃θ)>(Y v − X̃θ) + λ

d∑
k=1

θ2
k ,

with d = N2 (dimension of the regression parameters), λ ≥ 0.
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The solution is

θ̂ridge = (X̃
>
X̃ + λIN2)−1X̃

>
Y .

Bayesian interpretation

θ̂ridge = arg max
θ

p(θ|Y ,X ),

p(θ|Y ,X ) = p(Y ,X |θ)p(θ).

Prior vec(θ) ∼ N (0, λ−1IN2). Then the maximum a posteriori
correponds to the Ridge regression for a gaussian likelihood.
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Solution 3: LASSO

The LASSO (Tibshirani, 1996).

θ̂lasso = arg min
θ

(Y v − X̃θ)>(Y v − X̃θ) + λ
d∑

k=1

|θk |,

Bayesian interpretation

Prior θi ∼ Laplace(0, b) with b = λ−1 the scale parameter such

that p(θ) ∝ exp(−λ
d∑

k=1

|θk |). For a Gaussian likelihood, the

posterior distribution correspond to the LASSO.

The Laplacian prior assigns more weight to regions near zero than
the normal prior.

Ridge/LASSO geometry
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Parameters of interest

Trade-off: parameter change and parameter weight.

Example VAR for the Nikkei 225: large companies/smaller caps,
company sectors, and the like.

Alternative: the Group LASSO (Yuan and Lin, 2006): m groups
(known) of parameters with sizes p1, · · · , pm. Then

θ̂Glasso = arg min
Φ

(Y v − X̃θ)>(Y v − X̃θ) + λ

m∑
j=1

ηj

√√√√ pj∑
k=1

|θ(j)
k |2,

where θ = (θ
(j)
k , j = 1, · · · ,m; k = 1, · · · , pj), ηj controls for the

group’s size.
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Sparsity assumption

Data with a large number of variables relative to the sample size
are increasingly common. High-dimensional data arise through a
combination of:

(i) the data may be inherently high-dimensional in that many
different characteristics per observation are available.

(ii) even when the number of available variables is relatively small,
researchers rarely know the exact functional form with which
the small number of variables enters the model of interest.

The key concept underlying the analysis of high-dimensional data:
dimension reduction or regularization.

Producing a useful forecasting model requires regularization; that
is, the estimates must be constrained so that overfitting is avoided
and useful out-of-sample forecasts can be obtained.
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Parameter of interest: θ ∈ Rd .

The sparsity assumption can be formulated as:

k0 = card(A), with A :=
{
i : θ0,i 6= 0

}
,

such that k0 < d .

A: true underlying support (not observed).

Penalisation/Regularization: provides Â.

Penalty/Regularizer:

(i) norm with respect to the parameter non-differentiable at the
origin.

(ii) the penalty depends on a tuning/regularization parameter
that enforces a particular type of sparse structure in the
solution.
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Criterion

n sample X = (X 1, · · · ,X n) of n realizations of X ∈ Rq.

Loss function Ln : Rqn ×Θ→ R, Θ ⊆ Rd , defined as

Ln(θ;X ) =
1

n

n∑
i=1

`(θ; X i ).

Typically, `: least square error, or minus a log-likelihood function.

Problem of interest:

θ̂ = arg min
θ∈Θ

{
Ln(θ;X ) + p(λn, θ)

}
.

Here p : R+ ×Θ→ R+ is the penalty/regularizer; λn is the
tuning/regularization parameter.

Motivation for sparsity? How to define sparsity in the model?
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Penalty function

LASSO (Tibshirani, 1996), Bridge (Knight and Fu, 2000), SCAD
(Fan and Li, 2001) and MCP (Zhang, 2010):

Lasso : p(λ, ρ) = λ|ρ|,
Bridge : p(λ, ρ) = λ|ρ|γ , 0 < γ < 1,

MCP : p(λ, ρ) = sign(ρ)λ

∫ |ρ|
0

(1− z/(λb1))+dz ,

SCAD : p(λ, ρ) =


λ|ρ|, |ρ| ≤ λ,
− 1

2(b2−1) (ρ2 − 2b2λ|ρ|+ λ2), λ ≤ |ρ| ≤ b2λ,

(b2 + 1)λ2/2, |ρ| > b2λ,

Here, b1 > 0 and b2 > 2: the larger, the more a LASSO like
penalty.

Extension to Group Penalisation, (Group) Fused LASSO, · · ·
SCAD/MCP/LASSO
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Asymptotic analysis

Focus on the asymptotic behaviour of the sparse M-estimator
when n, d →∞. Usually, d = O(nc) with 0 < c < 1.

Key result: oracle property (Fan and Li, 2001) ⇒ sparsity-based
estimator recovers A and is asymptotically normally distributed.

Convex penalisation (LASSO, Group LASSO): do not satisfy the
oracle property (inherent bias shrinking the large parameters)
except under a specific condition (irrepresentable condition); to fix
this issue, use adaptive version: Zou (2006).

(i) Knight and Fu (2000): asymptotic properties of
LASSO/Bridge when n→∞ only within OLS setting.

(ii) Fan and Li (2001): general penalized likelihood framework
with SCAD and oracle property. Fan and Peng (2004):
extension to double asymptotic.

(iii) Zou (2006): adaptive LASSO and oracle property.
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Oracle inequalities and support recovery

Derivation of explicit error bounds of the sparse M-estimator and
the conditions to establish support recovery.

The curvature of the loss function is a key ingredient:

(i) restricted eigenvalue conditions: Bickel, Ritov and Tsybakov
(2009); van de Geer and Bühlmann (2009).

(ii) restricted strong convexity (RSC): Negahban, Ravikumar,
Wainwright and Yu (2012); Loh and Wainwright (2015,
2017); Poignard and Fermanian (2021).

Loh and Wainwright (2017): support recovery established for
non-convex penalty functions when the loss Ln satisfies the RSC
condition.
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High-dimensional MGARCH

Joint work with J.D. Fermanian (2021).

In finance: need for flexible and realistic joint dynamics for asset
returns.

Portfolio size N, which may be large: N = 50, 100, 1000, . . .

Quantity of interest: second order conditional moment.

The usual approaches :

(a) Multivariate GARCH models (MGARCH)

(b) Multivariate stochastic volatility models (MSV)
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Typical problems:

(i) up to O(N4), O(N2) parameters in general. For some
restricted ”scalar cases”, only 3, but questionable.

(ii) generation of nonnegative definite matrices ⇒ some more or
less ad-hoc ”tricks”, ”normalizations”, etc.

(iii) inference techniques (two-stage Quasi Maximum Likelihood)
without well-founded theoretical foundations

(iv) modest improvements in terms of forecasting performances
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Multivariate GARCH process

A stochastic process
(
Xt

)
t=1,··· ,T , Xt ∈ RN .

Detrended series:

Xt = µt + εt ,

µt = E [Xt |Ft−1] = Φ0 + Φ1Xt−1,

εt = H
1/2
t (θ)ηt .

(ηt): strong white noise, E[ηt ] = 0, Var(ηt) = IN .

semi-parametric model ⇒ specifications of the law of (ηt) and
the dynamic of (Ht).

∀θ, Ht(θ) ∈ Ft−1.
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What can we expect from (Ht)?

(i) Stability by aggregation.

(ii) Sufficiently richly parameterized to capture cross-dynamics /
parsimony.

(iii) Easy conditions for positive-definiteness.

(iv) Avoid excessive inversion of the conditional variance.

A lot of model specification on (Ht): Vector-GARCH, BEKK,
DCC, and the like.

These models typically suffer from the curse of dimensionality:

BEKK: Ht = Ω + Aεt−1ε
>
t−1A

> + BHt−1B
>,

with Ω � 0, A,B : N × N matrices.
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Solutions to the curse of dimensionality

(i) Scalar dynamics: scalar BEKK, scalar DCC and the like,
which consists in constraing the matrix parameters as scalar
parameters.

(ii) Introduction of factor models: factor GARCH models.

(iii) Parameter shrinkage:

θ̂ = arg min
θ

{
f qmle(θ; εt , t = 1, · · · ,T ) + p(λ, θ)

}
.

Problems: smoothness of f qmle(.; εt , t = 1, · · · ,T ), numerical
estimation.
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Multivariate ARCH

Ignoring the autoregressive term, the Vector GARCH becomes

Ht = A +

q∑
k=1

(IN ⊗ ε>t−k)Bk(IN ⊗ εt−k),

where A,Bk are symmetric, non-negative definite. This can be
written as a linear model:

εtε
>
t = A +

q∑
k=1

(IN ⊗ ε>t−k)Bk(IN ⊗ εt−k) + ζt , E[ζt |Ft−1] = 0,

idest for every couple (i , j) ∈ {1, . . . ,N}2 such that i ≤ j , we have

εi ,tεj ,t = ai ,j +

q∑
k=1

N∑
r ,s=1

bijk,rsεr ,t−kεs,t−k + ζij ,t , E[ζij ,t |Ft−1] = 0,

where Bijk = [bijk,rs ]1≤r ,s≤N . Sparsity assumption on the Bijk

coefficients.
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Multivariate ARCH process: estimation by OLS.

Assume that the above model is the true one, with the true
index q0. A penalisation procedure with q larger than q0

would likely set the parameters bijk,rs to zero when k > q0.

If the true model is a GARCH type one, then it can be
rewritten as the above model with q =∞ (under suitable
conditions on the parameters).

⇒ May produce relevant approximations of usual GARCH
processes taking q ”sufficiently” large.

Propose several conditional variance specification ensuring the
p.d. of Ht : Cholesky-GARCH, projection on space of p.d.
matrices.

Numerical advantage: ability to parallelize the estimation
(equation-by-equation).
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Consistency and oracle property

θ̂ = arg min
θ∈Θ

{
GT `(θ) + p(λT , γT θ)

}
, GT `(.) : OLS type loss,

p(λT , γT θ) = λT
m∑

k=1

ck∑
i=1
α

(k)
T ,i |θ

(k)
i |+ γT

m∑
l=1

ξT ,l‖θ(l)‖2 : adaptive SGL.

(i) Sparsity: Group level (parameters corresponding to a lag) and
within each group.

(ii) ‖θ̂ − θ0‖ = Op(T−1/2 + λTT
−1aT + γTT

−1bT ), where

aT := k0.(max
k∈S

(max
i∈Ak

α
(k)
T ,i )), bT := k0.(max

l∈S
ξT ,l) with

k0 = card(A).

(iii) Oracle property: lim
T→∞

P(Â = A) = 1 and

√
T (θ̂A − θ0,A)

d−→
T→∞

NRk0 (0,H−1
AAMAAH

−1
AA).
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Factor models

Joint work with Y.Terada (2020).

Consider n observations of a p-dimensional i.i.d. random vector
(Xi ) following the factor structure

Xi = ΛFi + εi ,

where (Fi ) is the Rm vector of factor variables and (εi ) the Rp

vector of errors - or idiosyncratic variables (r.h.s. non-observable).

Λ ∈Mp×m(R) is the loading matrix, m is known.

E[Fi ] = 0 ∈ Rm, E[FiF
>
i ] = Im, E[Fiε

>
i ] = 0 ∈Mm×p(R).

E[εiε
>
i ] = Ψ ∈Mp×p(R) non-diagonal.

The idiosyncratic components (εi ) are assumed to be correlated:
approximate factor models (Chamberlain and Rothschild, 1983).
The quantity of interest is

Σ(Λ,Ψ) := Var(Xi ) = ΛΛ> + Ψ.
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Inference methods

PCA method

Provides an easy estimation of Σ together with consistent
estimators when p and n are large.
Implicitly assumes that the idiosyncratic covariance matrix is
decomposed as a scalar times an identity matrix: see, e.g.,
Fan, Liao, Mincheva (2011, 2013) and their POET estimator
(probability bounds).

QML method

Eliminates the bias from the cross-sectional heteroscedasticity:
see, e.g., Bai and Li (2012, 2016).
Anderson and Amemiya (1988), Bai and Li (2012, 2016):
large sample properties of the likelihood-based factor model
estimators, Ψ is diagonal.
Bai and Li (2016): large sample properties of the QML-based
factor model, non-diagonal Ψ and diverging p.
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Sparse modelling

A broad range of studies on the sparse estimation of Σ.

Such sparse assumption may not be appropriate: several common
factors exist for the underlying structure of the observed variables.

Factor analysis stands as the natural method to appropriately deal
with the common factors.

In standard factor analysis, the εi are assumed uncorrelated ⇒ Ψ
diagonal (strict factor model).

However, this diagonal assumption is too restrictive in practice:
assume the sparsity of the idiosyncratic covariance, which allows
for the existence of correlation among the idiosyncratic
components (approximate factor model).
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Statistical criterion: Gaussian QML


Ψ̂g = arg min

Ψ∈Ω

{
Gn,p(Λ̃; Ψ) + p(λn, θΨ)

}
, where

(Λ̃, Ψ̃) = arg min
(Λ,Ψ)∈Θ

{
Gn,p(Λ; Ψ)

}
, with

Gn,p(Λ; Ψ) = 1
2p

(
log(|Σ(Λ,Ψ)|) + tr(ŜΣ(Λ,Ψ)−1)

)
,

with θΨ = vech(Ψ) and

Ŝ : sample variance covariance estimator.
p(λn, .) : Rp(p+1)/2 → R: penalty function with λn the
regularization parameter.
g(θΨ) ≤ R: side condition to manage non-convex problems.

Ω =
{

Ψ : Σ := Σ(Λ̃,Ψ) = Λ̃Λ̃> + Ψ, Ψ = Ψ>, Ψ � 0,

c1 < λmin(Ψ) < λmax(Ψ) < c2, a < λmin(2Ŝ − Σ), g(θΨ) ≤ R
}
.
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Statistical criterion: Least Squares



Ψ̂ls = arg min
Ψ∈Ω̄

{
Fn,p(Λ̃; Ψ) + p(λn, θΨ)

}
, where

Fn,p(Λ̃; Ψ) = 1
2p‖Σ̂− Λ̃Λ̃> −Ψ‖2

F , and

(Λ̃, Ψ̃) = arg min
(Λ,Ψ)∈Θ

{
Gn,p(Λ; Ψ)

}
, with

Gn,p(Λ; Ψ) = 1
2p

(
log(|Σ(Λ,Ψ)|) + tr(ŜΣ(Λ,Ψ)−1)

)
,

with θΨ = vech(Ψ) and

Ω̄ =
{

Ψ : Σ := Σ(Λ̃,Ψ) = Λ̃Λ̃> + Ψ,Ψ = Ψ>,Ψ � 0,

l1 < λmin(Ψ) < λmax(Ψ) < l2, g(θΨ) ≤ R
}
.
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Two-step estimation: motivation

Step 1 (Λ̃, Ψ̃): first step estimators (non-penalised) obtained
by Gaussian QML function Gn,p(.; .) in the parameter set Θ.

Step 2 Solve the penalised Gaussian QML based criterion ⇒
θ̂gΨ = vech(Ψ̂g )

Or alternatively

Step 2 Solve the penalised least squares based criterion ⇒
θ̂lsΨ = vech(Ψ̂ls)

Two step method: regularity conditions on the (non-penalised) loss
function with respect to Ψ (RSC condition) are satisfied
conditionally on the first step estimators.

Bai and Li (2012):

‖Λ̃− Λ0‖F = Op

(√
p

n

)
+ Op

(√
1

p

)
.
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Error bounds:Gaussian based criterion

Corollary

Assume p(λn, .) is µ-amenable, n ≥ CR2α−2
2 log(p(p + 1)/2), with

C > 0 a sufficiently large constant, with

α2 = {λmax(Λ̃Λ̃>) + λmax(Ψ0) + 1}−3a/2p, if

4 max{λmax(Ψ−1
0 )2

2p
‖Λ̃Λ̃> + Ψ0 − Ŝ‖s , α2

√
log p(p + 1)/2

n
} ≤ λn ≤

α2

6R
,

where Ψ0 ∈ Ω, suppose 3
4µ < α1 with α1 = α2. Then Ψ̂g satisfies

‖vech(Ψ̂g )− vech(Ψ0)‖2 ≤
6λn
√
k0

4α1 − 3µ
,

‖vech(Ψ̂g )− vech(Ψ0)‖1 ≤
6(16α1 − 9µ)λnk0

(4α1 − 3µ)2
,

with a ∈ Ω so that a > 0, k0 = |A|.
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Error bounds: Least Squares based criterion

Corollary

Assume p(λn, .) is µ-amenable, n ≥ CR2α−2
2 log(p(p + 1)/2), with

C > 0 a sufficiently large constant, with α2 = 1
p , if

4 max{1

p
‖Ŝ − Λ̃Λ̃> −Ψ0‖∞,

1

p

√
log p(p + 1)/2

n
} ≤ λn ≤

α2

6R
,

where Ψ0 ∈ Ω, suppose 3
4µ < α1 with α1 = α2. Then Ψ̂ls satisfies

‖vech(Ψ̂ls)− vech(Ψ0)‖2 ≤
6λn
√
k0

4/p − 3µ
,

‖vech(Ψ̂ls)− vech(Ψ0)‖1 ≤
6(16/p − 9µ)λnk0

(4/p − 3µ)2
,

with k0 = |A|.
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Work in progress

Factor decomposition: Σ = ΛΛ> + Ψ⇒ Regularization of Λ.

Major difficulty: quadratic product and identifiability
condition (rotational indeterminancy) ⇒ Penalised estimation
equation framework with explicit management of the
rotational indeterminancy.

Sparse SVAR models via precision matrix: the SVAR
coefficients can be interpreted in terms of a directed acyclic
graph ⇒ sparse precision matrix of a suitable random vector
provides sparse SVAR coefficients.

Feature selection methods: specification of association
measure, sure screening properties, management of redundant
features.
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Geometry for Ridge and LASSO

θ̂ridge = arg min
θ

(Y v − X̃θ)>(Y v − X̃θ) + λ
d∑

k=1

θ2
k

⇔ θ̂ridge = arg min
θ

(Y v − X̃θ)>(Y v − X̃θ) s.t.
d∑

k=1

θ2
k ≤ t.

θ̂lasso = arg min
θ

(Y v − X̃θ)>(Y v − X̃θ) + λ
d∑

k=1

|θk |

⇔ θ̂lasso = arg min
θ

(Y v − X̃θ)>(Y v − X̃θ) s.t.
d∑

k=1

|θk | ≤ t.
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Regularity conditions on the unpenalised loss

Ln(θ): often lack of convexity w.r.t. the parameters.

Restricted strong convexity: allows the management of non-convex
loss functions (see Negahban et al., 2012).

Ln satisfies the restricted strong convexity condition (RSC) at θ if
there exist two positive functions ∃α1, α2 > 0 and ∃τ1, τ2 ≥ 0 of
(θ, n, d) such that, for any ∆ ∈ Rd ,

〈∇θLn(θ + ∆)−∇θLn(θ),∆〉 ≥ α1‖∆‖2
2 − τ1

log d

n
‖∆‖2

1, if ‖∆‖2 ≤ 1,

〈∇θLn(θ + ∆)−∇θLn(θ),∆〉 ≥ α2‖∆‖2 − τ2

√
log d

n
‖∆‖1, if ‖∆‖2 ≥ 1.

Note that the (RSC) property is fundamentally local and that
αk , τk , k = 1, 2 depend on the chosen θ.
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