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Introduction

1 Long memory models have been widely considered in the geophysical

literature to investigate on the dependence structure of many climate

time series.

2 According to Beran (1994), a stochastic process exhibits long memory

if the autocovariance function γ(k) is not absolutely summable or,

equivalently, if the spectral density f (λ) is unbounded at some

frequency λ0 ∈ [0, π], such that γ(k) ∼ k2d−1Cγ(k, d) as k →∞ and

f (λ) ∼ λ−2dCf (k , d) as λ→ λ0 where d is de�ned as the memory

parameter and Cγ(k , d) and Cf (λ, d) are two slowly varying function.
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Introduction

1 We focus on the analysis of three climate time series where the

persistence in the data is mostly concentrated at the long-run

frequency. The �rst series concerns yearly central European summer

temperature reconstructions based on Austrian Alps Tree ring data.

The remaining series are two yearly tree ring records.

2 Probably, we remember from our childhood that the age of a tree

could be found by counting its rings. Moreover, the ring widths can be

used to estimate past temperature or precipitation over the lifetime of

the tree, such that we can learn about climate history for hundreds

and thousands of years.
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Introduction

Figure: (a) Paleo-temperature reconstruction, (b) Australian pine tree rings and
(c) Arizona tree ring series: time series plot and periodogram.
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Introduction

A possible candidate model to analyse these data is the the fractional

noise (FN) process (cf. Hosking (1981) and Andvel (1986))

(1− L)dyt = εt , εt ∼WN(0, σ2) (1)

which displays long memory if d ∈ (0, 0.5) with spectral density

f (λ) =
σ2

2π

(
2 sin(

λ

2
)

)−2d
(2)

unbounded at the long-run frequency.

The FN process can be generalized by the larger class of Fractional

equal-root Autoregressive Moving Average (FerARMA) processes,

which encompasses both long memory and short memory

speci�cations (eg. the standard ARMA processes).
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The FerARMA class of processes

The FerARMA class is de�ned by the following fractional process:

φ(L)d1yt = ψ(L)d2εt , (3)

where Lkyt = yt−k , φ(z) =
∑p

k=1
φkz

k , ψ(z) =
∑q

k=1
ψkz

k and

εt ∼WN(0, σ2), such that the process is stationary and invertible if

the roots of the φ(z) and ψ(z) polynomials lie outside the unit circle,

while the parameters d1, d2 belong to the interval (0, 1], .

The standard ARMA(p, q) process is obtained if d1 = d2 = 1.

A long memory process can be obtained eg. if d1 ∈ (0, 1) with a unit

root in the AR polynomial, φ(1) = 0.

Our purpose is to introduce the FerARMA class as an

alternative way to �t and forecast highly persistent time series.
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The FerARMA class of processes

In our context, we will focus on a reduced form of (3) with

p, q ∈ {0, 1}, that is the FerARMA(1, d1, d2, 1) process

(1− φL)d1yt = (1− ψL)d2εt (4)

where εt ∼ N(0, σ2). The process is second order stationary and

exhibits short memory for any value of d1 and d2 in (0, 1] and φ and ψ
in [0, 1).

Notice that if φ = d2 = 1 we obtain a long memory FIMA process (c.f.

Hosking, 1981) with MA(1) errors, which is stationary if d1 < 0.5 with

an unbounded spectral density at the origin.
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Comparison with respect to long memory models

The FerARMA model is stationary also for values of d > 0.5, allowing
for the support of the Durbin-Levinson recursion in the computation of

the best linear predictor (see Brockwell and Davis, 1986).

The FerARMA process displays a bounded and continuous spectrum,

allowing for a CLT of the Whittle estimator (c.f. Whittle, 1953) under

less restrictive assumptions wrt the asymptotic theory on long memory

models given in Fox and Taqqu (1986) and Velasco and Robinson

(2000) for the stationary and no-stationary case, respectively.
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The Fractional equal root AR(1) or Spolia process

The FerAR(1,d) or Spolia process is an interesting special case of (4). It

was initially introduced by Spolia et al. (1980) and, more recently, it has

been formalized in Peiris (2003). It is described by:

yt = (1− φL)−dεt (5)

where εt ∼ N(0, σ2). The process is stationary if φ ∈ (0, 1). The spectral
density is given by:

f (ω) =
σ2

2π
|1−φe−ıω|−2d =

σ2

2π
(1+φ2−2φ cos(ω))−d ω ∈ [−π, π] (6)
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The Fractional equal root AR(1) or Spolia process

The ACF is given by:

γ(k) = σ2
Γ(k + d)

Γ(d)Γ(k + 1)
φkF (d , k + d ; k + 1;φ2) k ∈ Z (7)

where Γ(z) =
∫∞
0

xz−1e−xdx is the Euler gamma function, while

F (a, b; c ; z) =
∞∑
j=0

Γ(a + j)Γ(b + j)Γ(c)

Γ(a)Γ(b)Γ(c + j)Γ(j + 1)
z j

is the hypergeometric function de�ned for |z | < 1.
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The Fractional equal root AR(1) or Spolia process

Since both the AR(1) and FN speci�cation are special case of the

Spolia process (for d = 1 and φ = 1, respectively) it may be

interesting to compare them in terms of persistence.

The persistence of a process is characterized by the speed at which its

impulse response function (IRF)
∑∞

j=0
βj vanishes, where

βj ∼ 1

Γ(d) j
d−1φj as j →∞.

The next �gure highlights the hybrid characteristic of the Spolia

process in a suitable parameter's set showing how the Spolia IRF

coe�cients decays slower than in the case of the AR(1) process but

faster with respect to the FN speci�cation.
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The Fractional equal root AR(1) or Spolia process

Figure: IRFs coe�cients according to the FN(d1) process with parameter
d1 = 0.40, the AR(1) process with parameter φ1 = 0.60 and the FerAR(1, d2)
process with parameters d2 = 0.45 and φ2 = 0.95.
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The Fractional equal root AR(1) process with MA(1) errors

Another interesting special case of (4) is the Spolia process with MA(1)

errors (that is the FerARMA(1, d , 1, 1)), formalised in Shitan and Peiris

(2011). It is de�ned by:

(1− φL)dyt = (1− ψL)εt (8)

where εt ∼ N(0, σ2). The spectral density is:

f (ω) =
σ2

2π

1 + ψ2 − 2ψ cos(ω)

(1 + φ2 − 2φ cos(ω))d
with ω ∈ [−π, π] (9)

The variance is given as:

γ(0) = σ2
[

(1 + ψ2)F (d , d ; 1;ψ2)− 2φψdF (d , 1 + d ; 2, φ2)

]
(10)
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The Fractional equal root AR(1) process with MA(1) errors

The ACF for |k | ≥ 1 follows according to:

γ(k) =
σ2φ|k|−1Γ(|k |+ d − 1)

Γ(d)Γ(|k|+ 2)
× (11)

×
{
φ(1 + ψ2)(|k |+ 1)(|k |+ d − 1)F (d , |k |+ d ; |k |+ 1;ψ2)+

−ψφ2(|k|+ d)(|k |+ d − 1)F (d , |k |+ 1 + d ; |k |+ 2, φ2)+

−ψ|k |(|k |+ 1)F (d , |k | − 1 + d ; |k |, φ2)

}
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Parameters Estimation: The Exact likelihood

We consider two full likelihood approaches to estimate the class of

FerARMA models, through the maximization of the exact and Whittle

likelihood (cf. Whittle, 1953).

The Exact likelihood

Let y =
[
y1, · · · , yT

]′
be T realizations of a random variable

Y ∼ N(0,ΣT ) where ΣT is the covariance matrix. The exact log-likelihood

function can be computed as:

LL(θ) = −T

2
log(2π)− 1

2
y ′Σ−1T (θ)y − 1

2
log |ΣT (θ)| (12)

where θ = [θ1, · · · , θp]′ ∈ Θ ⊂ IR
p is the parameter vector. Because the

inversion of a large dimensional covariance matrix could be laborious, we

compute Σ−1T via the Durbin-Levinson recursion.
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Parameters Estimation: The Durbin-Levinson recursion

According to Brockwell and Davis (1986), the best one-step ahead linear

predictor ŷt+1|t of yt+1 in terms of yt+1−T , · · · , yt is:

ŷt+1|t =
n∑

j=1

ϕT ,jyt+1−j

where the vector ϕT = [ϕT ,1, · · · , ϕT ,T ]′ is the solution of the Yule-Walker

equation: ϕT ,1
...

ϕT ,T

 = Σ−1T

 γ(1)
...

γ(T )


with ΣT as the T × T covariance matrix of the process yt . The notation
yt+1|t means E (yt+1|It) where It is the information set at time t.
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Parameters Estimation: The Durbin-Levinson recursion

For m = 2, · · · ,T and initialising ϕ1,1 = γ̂(1)
γ̂(0) and ν1 = γ̂(0)

(
1− γ̂(1)2

γ̂(0)2

)
,

the coe�cients collected in ϕT can be computed recursively via the Durbin

and Levinson recursion:

ϕm,m =

(
γ̂(m)−

[
ϕm−1,1 . . . ϕm−1,m−1

] γ̂(m − 1)
...

γ̂(1)

)ν−1m−1

 ϕm,1
...

ϕm,m−1

 =

 ϕm−1,1
...

ϕm−1,m−1

− ϕm,m

ϕm−1,m−1
...

ϕm−1,1


νm = νm−1(1− ϕ2

m,m)

where ϕm,m are the partial autocorrelations, γ̂(k) is the estimated ACF and

νT is the one-step-ahead mean square prediction error.
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Parameters Estimation: The Durbin-Levinson recursion

Through the Durbin-Levinson recursion, we can obtain the inverse

covariance matrix via the following decomposition:

Σ−1T = C ′TDTCT

where DT = diag(ν−1
0
, ν−1

1
, · · · , ν−1T−1) with ν0 = γ̂(0) and:

CT =


1 0 0 · · · 0

−ϕ1,1 1 0 · · · 0

−ϕ2,2 −ϕ2,1 1 · · · 0
...

... · · · . . .
...

−ϕT−1,T−1 −ϕT−1,T−2 −ϕT−1,T−3 · · · 1
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Parameters Estimation: The Whittle likelihood

The Whittle likelihood

The standard Whittle likelihood is an approximation of the exact

log-likelihood where the covariance terms in the time domain are

substituted by spectral terms in the frequency domain. It is given by the

following function:

Lw (θ) = − T

4π

∫ π

−π
log f (ω; θ)dω − T

4π

∫ π

−π

I (ω)

f (ω; θ)
dω (13)

where f (ω; θ) is the spectral density and I (ω) is the periodogram de�ned

as:

I (ω) =
1

2πT

∣∣∣∣ T−1∑
t=0

yt+1e
−iωt

∣∣∣∣2
The main advantage of the Whittle approach is that computations may be

simpli�ed considerably with respect to the exact likelihood estimation.
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Parameters Estimation: Asymptotic theory

It follows from the standard asymptotic theory by Hannan (1973) that for

the Whittle estimator θ̂ = argmaxθ∈Θ{LW (θ)} holds

Theorem

Let yt be the FerARMA(1, d1, d2, 1) process and let θ ∈ Θ ⊂ S be the true

value of the parameters, where Θ is assumed to be compact,

θ =
[
d1 d2 φ ψ σ

]′
and S = (0, 1]2 × [0, 1)2 × (0,∞). It holds that

θ̂
p→ θ

and √
T (θ̂ − θ)

d→ N(0,Ω(θ)−1)

, where the matrix Ω(θ) has (i , j) elements

1

4π

∫
π

−π

∂ log f (λ;θ)

∂θi

∂ log f (λ;θ)

∂θj
dλ .
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Simulation study: Exact vs Whittle estimation

In the following, we implement a Monte Carlo experiment simulating 103

times a sample size of T ∈ {250, 500, 1000, 2500} realizations from the

Spolia process and, then, estimating the model both via the Whittle and

exact likelihood. We consider di�erent true values of d , φ ∈ {0.2, 0.6, 0.9},
while the variance parameter is set to 1.

The process is simulated via the Durbin Levinson method (cf. Hosking,

1981) and initial guesses have been found via the Method of Moments

considering the Spolia sample autocorrelation function, such that:

φ0 = 2
ρ̂2
ρ̂1
− ρ̂1 , d0 =

ρ̂1
φ0

where ρ̂k is the sample autocorrelation function.
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Simulation study: Exact vs Whittle estimation

Table: Bias from the estimation of 103 realizations of the Spoila process with
sample size T = 2500. Absolute lower values are in bold text.

T=2500 WHITTLE EXACT

Bias(d̂) Bias(φ̂) Bias(σ̂) Bias(d̂) Bias(φ̂) Bias(σ̂)

d = 0.2, φ = 0.2 0.3090 0.1369 -0.0013 0.3130 0.1372 -0.0009

d = 0.2, φ = 0.6 0.0885 -0.0330 -0.0008 0.0873 -0.0318 -0.0004

d = 0.2, φ = 0.9 0.0089 -0.0202 -0.0010 0.0093 -0.0212 -0.0006

d = 0.6, φ = 0.2 0.0155 0.0974 -0.0008 0.0134 0.0986 -0.0004

d = 0.6, φ = 0.6 0.0182 -0.0045 -0.0007 0.0180 -0.0042 -0.0004

d = 0.6, φ = 0.9 0.0013 -0.0018 -0.0005 0.0021 -0.0022 -0.0003

d = 0.9, φ = 0.2 -0.1316 0.0738 -0.0004 -0.1326 0.0741 -0.0000

d = 0.9, φ = 0.6 0.0028 0.0003 -0.0007 0.0028 0.0006 -0.0005

d = 0.9, φ = 0.9 0.0017 -0.0016 -0.0003 0.0024 -0.0016 -0.0009
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Simulation study: FerARMA �ts long memory

Table: Bias from the estimation of 103 realizations of the Spoila process with
sample size T = 2500. Here, we approximate both long memory and unit root
processes considering true values of the d and φ parameters close to one. Lower
values are in bold text.

T=2500 WHITTLE EXACT

Bias(d̂) Bias(φ̂) Bias(σ̂) Bias(d̂) Bias(φ̂) Bias(σ̂)

d = 0.20, φ = 0.99 0.0012 -0.0056 -0.0012 0.0021 -0.0066 -0.0003

d = 0.60, φ = 0.99 0.0034 -0.0022 0.0001 0.0462 -0.0449 0.0138

d = 0.99, φ = 0.20 -0.1837 0.0755 -0.0006 -0.1840 0.0757 -0.0002

d = 0.99, φ = 0.60 -0.0291 0.0148 -0.0012 -0.0290 0.0150 -0.0011

d = 0.99, φ = 0.99 -0.0020 -0.0010 0.0176 0.0099 -0.0016 -0.0003
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Simulation study: FerARMA �ts long memory

Many studies in the literature (eg. Granger and Hyung, 2004 and

Perron and Qu, 2010) that highlight the di�culty in distinguish

between the long memory property generated by a short memory

process with occasional shifts in the mean and the one generated a

standard fractional long memory process.

Let us investigate on this issue showing as the Spolia process is able to

capture the long memory features generated by a WN with occasional

breaks in the mean:

yt = εt +
t∑

i=1

ηibi (14)

where εt ∼ N(0, σ2ε), ηt ∼ N(0, σ2η), E (εtηt) = 0 and bi follows an
i.i.d. binomial distribution, such that bi = 1 with probability p bi = 0

with probability 1− p.
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Simulation study: FerARMA �ts long memory

Table: Whittle estimates according to the Spolia and FN models in terms of
Monte Carlo expectations with 103 repetitions, T = 103 and considering the WN
with shifts in the mean as DGP. The value in brackets is the AIC.

Whittle estimates of the φ parameter

Model σ2η \ p(pT ) p(pT ) = 0.0025(5) p(pT ) = 0.005(10) p(pT ) = 0.01(20) p(pT ) = 0.05(100)

FerAR(1, d) σ2η = 0.01 0.2655(-1658) 0.4088(-1643) 0.6324(-1630) 0.9843(-1554)

σ2η = 0.05 0.6136(-1623) 0.8386(-1591) 0.9646(-1557) 0.9988(-1418)

σ2η = 0.1 0.7762(-1598) 0.9500(-1558) 0.9905(-1501) 0.9990(-1327)

σ2η = 0.2 0.8943(-1560) 0.9797(-1508) 0.9979(-1435) 0.9991(-1220)

Whittle estimates of the d parameter

σ2η \ p(pT ) p(pT ) = 0.0025(5) p(pT ) = 0.005(10) p(pT ) = 0.01(20) p(pT ) = 0.05(100)

σ2η = 0.01 0.1023(-1658) 0.0803(-1643) 0.0895(-1630) 0.1319(-1554)

σ2η = 0.05 0.0938(-1623) 0.1026(-1591) 0.1297(-1557) 0.2388(-1418)

σ2η = 0.1 0.1084(-1598) 0.1299(-1558) 0.1725(-1501) 0.2947(-1327)

σ2η = 0.2 0.1289(-1560) 0.1697(-1508) 0.2224(-1435) 0.3544(-1220)

Whittle estimates of the dLM parameter

σ2η \ p(pT ) p(pT ) = 0.0025(5) p(pT ) = 0.005(10) p(pT ) = 0.01(20) p(pT ) = 0.05(100)

FN(dLM) σ2η = 0.01 0.0211(-1661) 0.0339(-1646) 0.0544(-1634) 0.1301(-1556)

σ2η = 0.05 0.0565(-1626) 0.0903(-1594) 0.1272(-1559) 0.2389(-1422)

σ2η = 0.1 0.0864(-1601) 0.1256(-1561) 0.1719(-1505) 0.2955(-1330)

σ2η = 0.2 0.1190(-1563) 0.1684(-1512) 0.2220(-1439) 0.3573(-1220)
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Simulation study: conclusion

The Whittle likelihood leads to accurate parameters estimates if the

sample size is large.

Both the φ and d parameters a�ect the memory of the process and

they could come into con�ict with each other when either one or both

of them are quite small. In this case, the Spolia process tends to be

more similar to a white noise sequence.

It should be clear that the Spolia process estimates are more accurate

in the case of high persistent data.

In approximating long memory under non stationarity (d = 0.60 and

φ = 0.99) the Whittle approach leads to very much more accurate

parameters estimates with respect to the exact likelihood, because of

the drawbacks of the Durbin-Levinson recursion in estimating the

model in proximity of the non stationary region.

The Spolia process approaches a FN as the size and numbers of breaks

increase along with the persistence in the simulated data.
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Testing long memory against FerARMA

Let us address the issue whether the FerARMA model is the better

model in a given situation or if a long memory speci�cation should be

preferred.

De�ne the spectral density of the FerARMA speci�cation, with

parameter θ = [d ,θ1, φ]′, as

f (λ; d ,θ1, φ) = (1− 2 cos(λ)φ+ φ2)−d f1(λ;θ1), with λ ∈ [−π, π],
(15)

where f1(λ;θ1) is the bounded spectrum of a generic short memory

stationary process.

We test the null H0 : φ = 1 of a long memory speci�cation against the

alternative H1 : φ < 1 of a short memory FerARMA speci�cation, via

the Whittle likelihood ratio test:

LR = 2T (LW (d̂ , θ̂1, φ̂)− LW (d̂ , θ̂1, 1)), (16)
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Testing long memory against FerARMA

It follows from Taniguchi and Amano (2009) that

Theorem

Let yt be a FerARMA process with spectral density f (λ; d ,θ1, φ) de�ned in

(15), then under the null hypothesis H0 : φ = 1, it holds that

LR
d→ χ21,

where LR is de�ned in (16) and χ2
1
denotes the chi-squared distribution

with 1 degree of freedom.

Now, consider 103 Monte Carlo repetitions where at each trial a

sample size of T ∈ {1000, 2500} realizations is generated from the

Spolia process, then the LR statistic is computed, under the true

values φ ∈ {0.94, 0.96, 0.98, 1.00}, d = 0.55 and σ = 1.
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Testing long memory against FerARMA

Figure: Empirical densities of the LR statistic. The dashed green line corresponds
to cv = Υ1(0.95) = 3.8415 where Υ1(z) is the inverse cumulative χ2

1
distribution

s.t. if LR > cv , then H0 : φ = 1 is rejected at the con�dence level of 95%.
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b) LR empirical distribution under = 0.96
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c) LR empirical distribution under = 0.98
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d) LR empirical distribution under = 1
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Empirical Illustration

Let us move on an empirical illustration considering the problem of

forecasting the yearly records of the tree ring and temperature

reconstruction time series.

Our purpose is to compare long memory models with respect to the

FerARMA class

FerAR : (1− φL)dyt = εt , FerARMA : (1− L)dyt = (1− ψL)εt

in terms of forecasting performance on the climate series.

As long memory models, we consider

FN : (1− L)dyt = εt , FARI : (1− L)d(1− ϕL)yt = εt

FIMA : (1− L)dyt = (1− ψL)εt , FerIMA : (1− L)dyt = (1− ψL)dεt

where εt ∼WN(0, σ2) and
[
ϕ ψ

]′ ∈ (−1, 1)2.
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Empirical Illustration

Table: Whittle estimates of the parameters.

Temperature reconstruction

d̂ σ̂2 φ̂ ϕ̂ ψ̂ LW (θ̂)

FerAR 0.5058 0.3805 0.9743 2258.7

FerARMA 0.6781 0.3791 0.9409 0.1845 2263.4

FN 0.4857 0.3822 2255.1

FARI 0.5132 0.3821 -0.0418 2255.8

FIMA 0.5184 0.3820 0.0483 2255.9

FerIMA 0.5203 0.3820 0.0969 2255.9

Australian tree rings

d̂ σ̂2 φ̂ ϕ̂ ψ̂ LW (θ̂)

FerAR 0.5034 0.0203 0.9663 2242.9

FerARMA 0.5924 0.0203 0.9515 0.1061 2243.9

FN 0.4829 0.0205 2241.2

FARI 0.5011 0.0205 -0.0280 2241.4

FIMA 0.5051 0.0205 0.0335 2241.4

FerIMA 0.5074 0.0205 0.0723 2241.4

Arizona tree rings

d̂ σ̂2 φ̂ ϕ̂ ψ̂ LW (θ̂)

FerAR 0.5019 0.0222 0.9882 3336.5

FerARMA 0.5134 0.0222 0.9868 0.0156 3336.6

FN 0.4935 0.0222 3335.9

FARI 0.4908 0.0222 0.0042 3335.9

FIMA 0.4902 0.0222 -0.0052 3335.9

FerIMA 0.4897 0.0222 -0.0121 3335.9

Federico Maddanu CY University EcoDep Seminar Forecasting highly persistent time series with bounded spectrum processesFebruary 28, 2022 32 / 39



Empirical Illustration

Table: Lagrange Multiplier test by Robinson (1994) according to the FN,
FARI(1, d), FIMA(d , 1) and FerIMA(d , 1) models. The test cannot reject the null
of non stationarity under long memory (H0 : d = 0.5) in all the cases.

FN FARI(1, d , 1, 1) FIMA(1, d , 1, 1) FerIMA(1, d , 1, 1)
p-value LM p-value LM p-value LM p-value LM

Temperature reconstr. 0.7867 0.0733 0.3535 0.8608 0.3912 0.7351 0.3398 0.9110

Australian tree rings 0.4839 0.4900 0.8776 0.0237 0.7747 0.0819 0.9303 0.0077

Arizona tree rings 0.8999 0.0158 0.9263 0.0086 0.9133 0.0118 0.9335 0.0070

Table: Likelihood ratio test according to the FerAR(1, d) and FerARMA(d , 1, 1, 1)
models. The test rejects the null hypothesis of long memory (H0 : φ = 1) for most
of the series and models.

FerAR FerARMA

p-values LR p-values LR

Temperature reconstr. 0.0071 7.2402 0.0001 15.0147

Australian tree rings 0.0652 3.3995 0.0259 4.9643

Arizona tree rings 0.2742 1.1954 0.2610 1.2636
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Empirical Illustration

Figure: Autocorrellation and periodogram of the residuals obtained by �tting the
Spolia process on the temperature reconstructions, Australian and Arizona tree
ring series.
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Empirical Illustration

Let us illustrate that the FerARMA class is able to improve predictive

accuracy in a recursive forecasting experiment with respect to the long

memory speci�cations.

Starting from T0 = 600 we estimate the models using the �rst T0 + t
observations, for t = 0, 1, · · · ,T − T0 − 1, and then we predict

ŷT0+t+h|T0+t , for h = 1, 2, · · · , 20. So that the Mean Square

Prediction Error (MSPE), given by

MSFE (h) = (T − T0 − h + 1)−1
T−h∑
t=T0

(yt+h − ŷt+h|t)
2,

is then used to compare the forecasting performance of the various

models.
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Empirical Illustration

Figure: MSPEs as a function of the prediction horizon h for the (a)
Paleo-temperature reconstructions, (b) Australian pine tree rings and (c) Arizona
tree ring series.
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Summary

1 The FerARMA process is here proposed, in its short memory

speci�cation, as an alternative way to forecast highly persistent time

series.

2 The main advantage concerns the stationarity condition, which holds

also for values of d > 0.5, enabling for the use of the DL recursion in

the computation of the best linear predictor. This is not possible in the

long memory case under non stationarity.

3 The possibility of regulating the persistence in the data through two

parameters (d and φ), likely provides more �exibility to the model in

capturing the dependence structure of the data.

4 These peculiarities allow to the FerARMA processes to perform

generally better with respect to its long memory counterparts in

forecasting several kind of climate time series.
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Discussion

1 In our opinion, the FerARMA class should be highly considered in

empirical studies on datasets showing elevate persistence, but for

which a long memory speci�cation may not be the most appropriate.

2 For instance, in climate science the Spolia process may be considered

as a possible choice in modelling the climate noise, which arises from

the sampling variability of high-frequency climate variables (see Leith,

1973).

3 A common choice in the climate literature is to model the climate

noise via an AR(1) (red noise) process.

4 However, there is also debate whether the FN (pink noise)

speci�cation may be a better choice, since the climate noise could be

related to the interaction of several variables, which aggregation can,

according to Granger (1980), generates long memory.

5 In such context, the Spolia process may be introduced as a possible

alternative.
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