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Breeding and mutations

X = {1, . . . ,K} is a finite set of possible genomes (types).

ξ = ξ1, ξ2, . . . is an exchangeable X -valued stochastic process – the breeding process.
For any population of n genomes (x1, . . . , xn) ∈ X n, we define

Pξ(x1, . . . , xn) := P(ξ1 = x1, . . . , ξn = xn)

By DeFinetti theorem, there exists a prior measure π on the set of all probability
measures on X (simplex), denoted by P = {(q1, . . . , qK ) : qk ≥ 0,

∑
k qk = 1}, such

that for every (x1, . . . , xn) ∈ X n (with q(k) = qk)

Pξ(x1, . . . , xn) =

∫
P

n∏
i=1

q(xi )π(dq) =

∫
P

K∏
k=1

qnkk π(dq),

where nk(x1, . . . , xn) is the number of k-types in (x1, . . . , xn), n1 + · · ·+ nK = n.



Breeding and mutations: an important special case

When π is Dir(α1, . . . , αk), then ξ is (generalized) Polya urn model also known as
Dirichlet-categorical process, where (α = (α1, . . . , αK ))

Pξ(ξn+1 = k | x1, . . . , xn, α) :=
nk + αk

n + |α|
, |α| = α1 + · · ·+ αK .

It follows that

Pξ(x1, . . . , xn) =
(α1)n1 · · · (αK )nK

(|α|)n
, (α)n := α(α + 1) · · · (α + n − 1).

By the formula above, it is clear that the random vector of counts has the distribution

Pξ(n1, . . . , nK ) =
n!

n1! · · · nK !

(α1)n1 · · · (αK )nK
(|α|)n

. (0.1)



Connection with Moran model

Basic Moran model (without mutation and selection): A population (n1, . . . , nK ) is
considered as an urn consisting of n balls of K colors/types, nk is the number of balls
of color k . Two balls are drawn with replacement. First of them is considered to breed
and another to die. If the first (the type that breeds) is i and another (the one that
dies) is j (i < j), then then there is transition

(n1, . . . , ni , . . . , nj , . . . nK )→ (n1, . . . , ni+1, . . . , nj−1, . . . nK ), with probability
ni
n

nj
n
.

One obtains a Markov chain (with state space being count vectors) that has K
absorbing states: (0, . . . , 0, n, 0, . . . , 0). Sooner or later the model is in an absorbing
state – fixation.



Connection with Moran model
Several ways to add mutations to basic Moran model.

Let ui > 0 i = 1, . . . ,K be the probability that randomly chosen ball mutates into i
type, u = u1 + · · ·+ uK is the overall probability of mutation and then the transition
above (i ball is replaced by j ball) is(ni

n
(1− u) + ui

)nj
n
.

Now the Markov chain is irreducible and has stationary measure (0.1):

Pξ(n1, . . . , nK ) =
n!

n1! · · · nK !

(α1)n1 · · · (αK )nK
(|α|)n

,

where

αk =
nuk

1− u
⇔ uk =

αk

|α|+ n
, k = 1, . . . ,K , |α| =

nu

1− u
⇔ u =

|α|
|α|+ n

.



Connection with Moran model

This establishes the connection with Dirichlet-categorical process – the probability that
i type is born is now (recall ui = αi

|α|+n )

ni
n

(1− u) + ui =
ni
n

n

|α|+ n
+

αi

|α|+ n
=
αi + ni
|α|+ n

= Pξ(ξn+1 = i | x1, . . . , xn, α).

Hence including mutations (in a certain way) into basic Moran model yields to
Dirichlet-categorical breeding process. In terms of Polya urn – there are α1, . . . , αK

prior balls and drawing a prior ball means mutation (makes it possible to see unseen
ball in population).

There are other ways of including mutation such that the stationary distribution would
be (0.1). Our breeding process ξ more general because it allows another prior
measures, not only Dirichlet.



Selection schemes and fitness

Given the population x1, . . . , xn, the xn+1-th element is breed from

Pξ(·|x1, . . . , xn).

Now the population consists on n + 1 individuals and one of them is chosen to
die/discard. The probability of being discard depends on the fitness w of type. Here

w : X 7→ (0,∞),

is the fitness and we order the types so that w(1) > w(2) ≥ · · · ≥ w(K ). So only type
1 is the most fit. There are several ways – selection schemes – incorporate the fitness
into selection.



Selection schemes and fitness

Single tournament selection:

1. Sample xn+1 ∼ Pξ(· | x1, . . . , xn) (uniformly)

2. Sample l randomly from {1, . . . , n}
3. With probability

w(xn+1)

w(xl) + w(xn+1)

replace xl with xn+1 and discard xl , otherwise discard xn+1 (the tournament
between xl and xn+1).

Inverse fitness selection:

1. Sample xn+1 ∼ Pξ(· | x1, . . . , xn)

2. Sample l from {1, . . . , n + 1} so that the probability that l is sampled is
proportional to 1

w(xl )

3. When l < n + 1, replace xl by xn+1.



Selection schemes and fitness

Both schemes introduce Markov chains with state space X n (vectors (x1, . . . , xn)). It
is easy to show that both schemes satisfy detailed balance equations with stationary
distribution being (when state space is X n)

Pn(x1, . . . , xn)︸ ︷︷ ︸
stationary distribution

=
1

Zn
Pξ(x1, . . . , xn)︸ ︷︷ ︸

breeding term

w(x1) · · ·w(xn)︸ ︷︷ ︸
fitness term

.

Due to the exchangeability, one can define Pn on the set of counts
{(n1, . . . , nK ) : n1 + · · ·+ nK = n}

Pn(n1, . . . , nK )︸ ︷︷ ︸
counts-version ofPn

=
n!

n1! · · · nK !
Pξ(1, . . . , 1︸ ︷︷ ︸

n1

, . . . ,K , . . . ,K︸ ︷︷ ︸
nK

).



Connection with Moran model

Recall – ξ is Dirichlet-categorical process and the probability that i-th type is born is

Pξ(ξn+1 = i | x1, . . . , xn, α) =
ni
n

(1− u) + ui , ui =
αi

|α|+ n
.

Under single tournament selection the probability that type j is chosen to die is

nj
n
· w(i)

w(i) + w(j)

P(the type j is chosen to fight)P(type j looses the tournament to type i).

Under inverse fitness selection the probability that type j is chosen to die is

njw
−1(j)∑

k nkw
−1(k) + w−1(i)

.



Connection with Moran model

Now the probability of transition that type i is born and type j discarded, equivalently,
the probability of transition (. . . , ni , nj , . . .)→ (. . . , ni + 1, nj − 1, . . .) is

(
ni
n

(1− u) + ui ) ·
nj
n
· w(i)

w(i) + w(j)
single tournament

(
ni
n

(1− u) + ui ) ·
njw

−1(j)∑
k nkw

−1(k) + w−1(i)
inverse fitness

In both cases the stationary distribution is the counts version of Pn:

Pn(n1, . . . , nK ) =
1

Zn

n!

n1! · · · nK !

(α1)n1 · · · (αK )nK
(|α|)n

· w(1)n1 · · ·w(K )nK .

More ways to incorporate w into Moran model so that stationary distribution is Pn.



Continuous time version

Consider the model with n individuals x1, . . . , xn. Every individual has lifetime

Tl ∼ Exp(
1

w(xl)
), ETl = w(xl),

less fit individuals have shorter lifetimes. When an individual, say xl dies, then it is
replaced x ′l that is generated from Pξ(·|x1, . . . , xl−1, xl+1, . . . , xn), where

(x1, . . . , xl−1, xl+1, . . . , xn)

is the population without xl at the time when xl dies. We then have a continuous time
Markov chain with state space X n, and it is possible to show that the chain has the
same stationary distribution Pn.



Equivalently, we can consider the same chain with states being the counts
(n1, . . . , nK ). In a special case K = 2 and i := n1, n2 = n− i , we have continuous time
MC with state space {0, 1, . . . , n} and transition rates

i → i + 1 at rate
(n − i)

w(2)
· Pξ(1|i , n − i − 1)

i → i − 1 at rate
i

w(1)
· Pξ(2|i − 1, n − i).

When ξ is Dirichlet-categorical (Beta-Bernoulli), then we have a version of continuous
time Moran model.

i → i + 1 at rate
(n − i)

w(2)
· i + α1

n − 1 + α1 + α2

i → i − 1 at rate
i

w(1)
· n − i + α2

n − 1 + α1 + α2



To recapitulate: We introduce a general evolution model that naturally incorporates
mutation, generalizes Moran model, satisfies detailed balance equation and has
stationary distribution

Pn(x1, . . . , xn)︸ ︷︷ ︸
stationary distribution

=
1

Zn
Pξ(x1, . . . , xn)︸ ︷︷ ︸

breeding term

w(x1) · · ·w(xn)︸ ︷︷ ︸
fitness term

.



Limit theorems

The main object of study is the measure (stationary distribution) on X n

Pn(x1, . . . , xn) =
1

Zn
Pξ(x1, . . . , xn)w(x1) · · ·w(xn) =

1

Zn

∫
P

n∏
l=1

q(xl)w(xl)π(dq).

Using counts version Pn(n1, . . . , nK ), we define a counterpart of Pn on simplex P:

Qn(
n1

n
, . . . ,

nK
n

) := Pn(n1, . . . , nK ).

Observe: the domain of Pn is X n that depends on n, Qn is always defined on P.



Limit theorems

What happens with Pn (with Qn) when n→∞?

For limit theorems, we let w depend on n as follows:

wn(k) = exp[−φ(k)

nλ
], 0 ≤ φ(1) < φ(2) ≤ · · · ≤ φ(K ), λ ≥ 0.

Hence λ = 0 corresponds to the constant prior, the bigger λ, the quicker the
differences disappear.

In what follows, Pn and Qn are defined with wn.



Limit theorems: the modes of convergence

Qn is defined on P for every n.

Question: is there prob measure Q∗ such that Qn ⇒ Q∗ (weak convergence)?

For Pn, we consider the existence of limit process as follows:

X1,1 ∼ P1

(X2,1,X2,2) ∼ P2

· · ·
(Xn,1,Xn,2, . . . ,Xn,n) ∼ Pn

· · ·



Limit theorems: the modes of convergence

Question: Is there a stochastic process X1,X2, . . . (limit population) so that for every
m the following convergence holds

(X1,n, . . .Xm,n)⇒ (X1, . . .Xm)?

This is equivalent to the existence of probability measure P∗ on X∞ so that

Pn(x1, . . . , xm)→ P∗(x1, . . . , xm), ∀m, ∀(x1, . . . , xm) ∈ Xm.

If this holds, we say that the limit process exists.



Limit theorems: First theorem
Theorem: (constant priors) Assume the support of the prior π is P.

1) If λ ∈ [0, 1), then Qn ⇒ δq∗ and the limit process exists with

P∗(x1, . . . , xm) =
m∏
i=1

q∗(xi ), where q∗ = (1, 0, . . . , 0).

2) If λ = 1, then Qn ⇒ π̄ and the limit process exists with

P∗(x1, . . . , xm) =

∫ m∏
i=1

q(xi )π̄(dq),

where for every E ⊂ P,

π̄(E ) =
1

Z

∫
E

exp[−〈φ, q〉]π(dq), Z =

∫
exp[−〈φ, q〉]π(dq), 〈φ, q〉 =

∫
φdq.

3) If λ > 1, then Qn ⇒ π and the limit process exists with

P∗(x1, . . . , xm) = Pξ(x1, . . . , xm).



Limit theorems: First theorem

This is our first phase transition theorem:

1) when λ ∈ [0, 1) (wn is constant or differences vary slowly), then the limit process
X1,X2, . . . has only one trajectory: 1111 · · · i.e. only the fittest genotype survives;

2) when λ = 1, then the limit process has nondegenerate prior π̄ (not iid process);

3) when λ > 1, then the differences between fitnesses decrease so fast that the
influence of selection disappears and the limit process equals to breeding process ξ.

So, in a sense λ = 1 is the proper scaling. In literature often w(k) = (1 + sk), with
sk · n→ γk (constant), and then

w(k) ≈ (1 +
γk
n

) ≈ exp[
γk
n

].



Limit theorems: Dirichlet prior

The weights as previously

wn(k) = exp[−φ(k)

nλ
], 0 ≤ φ(1) < φ(2) ≤ · · · ≤ φ(K ), λ ≥ 0.

We now consider Dirichlet priors (important special case, connection to Moran model):

πn = Dir(n1−λα1, . . . , n
1−λαK ), λ ∈ [0, 1]

so that πn depends on n as well!

Here α := (α1, . . . , αK ), αk > 0 and |α| :=
∑

k αk .



Limit theorems: Dirichlet prior

Recall that πn has density

πn(q) ∝
K∏

k=1

(qk)n
1−λαk , q = (q1, . . . , qK ) ∈ P.

Also recall that when (Y1, . . . ,YK ) ∼ πn, then

E (Y1, . . . ,YK ) = (α1/|α|, . . . , αK/|α|), Var(Yk) =

αk
|α|(1− αk

|α|)

|α|n1−λ .

Hence the bigger n or the smaller λ, the smaller variance and the more πn is
concentrated over its expectation.

Hence λ tunes the prior influence. λ = 1 is the constant prior case.



Limit theorems: Second theorem

Theorem: (Dirichlet priors)

1) If λ = 0, then Qn ⇒ δr∗ and the limit process exists with

P∗(x1, . . . , xm) =
m∏
i=1

r∗(xi ), where r∗(k) ∝ w(k)q∗(k), q∗(k) =
αk

(1 + |α|)− w(k)
θ

and θ is a parameter such that q∗ is probability measure.

2) If λ ∈ (0, 1), then Qn ⇒ δq∗ and the limit process exists with

P∗(x1, . . . , xm) =
m∏
i=1

q∗(xi ), where q∗(k) =
αk

φ(k) + |α| − θ
, k = 1, . . . ,K ,

and θ is a parameter.



Limit theorems: Second theorem

3) If λ = 1, then Qn ⇒ π̄ and the limit process exists with

P∗(x1, . . . , xm) =

∫ m∏
i=1

q(xi )π̄(dq),

where π̄ has density

π̄(q) ∝ exp[−〈φ, q〉]
K∏

k=1

(qk)αk−1.



Limit theorems: Second theorem

This is our second phase transition theorem:

1) When λ = 0, then the limit process X1,X2, . . . is i.i.d process with distribution r∗.

2) When λ ∈ (0, 1), then limit process X1,X2, . . . is i.i.d process with distribution q∗.
Observe that the limit process does not depend on λ! However, the speed of
convergence does.

3) The last case λ = 1 corresponds to the case of previous theorem (constant prior).
The limit density

π̄(q) ∝ exp[−〈φ, q〉]
K∏

k=1

(qk)αk−1

can be found in textbooks (for both Moran and Wright-Fisher model), but typically
(always?) obtained via diffusion approximation, our proof is much simpler.



Limit theorems: Dirichlet prior, different λ’s

A generalization:

wn(k) = exp[−φ(k)

nλ1
], πn = Dir(n1−λ2α1, . . . , n

1−λ2αK ).

Then

1) When λ1 > λ2, and λ2 < 1 then limit process X1,X2, . . . is i.i.d process
with distribution ( α1

|α| , . . . ,
αK
|α| ). This is again the case where the influence

of fitness vanishes.

2) When 0 ≤ λ1 < λ2, then the limit process X1,X2, . . . has only one
trajectory: 1111 · · · i.e. only the fittest genotype survives. The influence
of prior vanishes.

3) The case 0 ≤ λ1 = λ2 = λ ≤ 1 is considered above.



Uncountable X

Surprisingly hard to generalize these results to the case when X is uncountable
(X = R or Polish space or [0, 1]).

So let ξ = ξ1, ξ2, . . . be X -valued exchangeable breeding process with prior π on P.
Now P is the space of all probability measures on X .

The special important case is when π is Dirichlet process Dir(m, ᾱ), where ᾱ is
non-atomic probability measure (base measure) on X and m > 0 is concentration
parameter.

Recall that when P ∼ Dir(m, ᾱ), then for any finite measurable partition A1, . . . ,Ak of
X ,

(P(A1), . . . ,P(Ak)) ∼ Dir(mᾱ(A1), . . .mᾱ(Ak)).



Uncountable X : DP breeding

With π = Dir(m, ᾱ), for every n ≥ 1 and measurable A ⊂ X ,

P
(
ξn+1 ∈ A|ξ1 = x1, . . . , ξn = xn

)
=

m

m + n
ᾱ(A) +

n

m + n
· 1

n

n∑
i=1

δxi .

If x∗1 , . . . , x
∗
k are the distinct values of x1, . . . , xn with n1, . . . , nk being their

frequencies, the conditional distribution above can be interpreted as follows:

ξn+1|ξ1 = x1, . . . , ξn = xn ∼

{
ᾱ, with probability m

m+n ;

δx∗j , with probability
nj

m+n j = 1, . . . , k.

When ᾱ is non-atomic, then every draw from ᾱ is different from all previously seen
types – a mutation. The probability of mutation is then m

m+n and taking mn = c · n,
where c > 0, we obtain that the probability of mutation is constant: c/(c + 1).



Uncountable X : kernels and measure Pn

With the selection schemes – single tournament or inverse fitness – the corresponding
Markov chain have uncountable state space X n and have transition kernels P(x,A)
instead of transition matrices, where x = (x1, . . . , xn). These kernels (for both
schemes) satisfy detailed balance equations∫

B
P(x,A)Pn(dx) =

∫
A
P(x,B)Pn(dx), x = (x1, . . . , xn) ∈ X n, A,B ⊂ X

with stationary measure Pn being now

Pn(A) =
1

Zn

∫
A

n∏
j=1

wn(xj)P
n
ξ (dx) =

1

Zn

∫
P

∫
A

n∏
j=1

wn(xj)q(dxj)πn(dq).

The counterpart Qn on P easy to define.



Uncountable X : the fitness

Fitness wn is a function on X :

wn(x) = exp[−φ(x)

nλ
], φ : X → [0,∞) continuous, bounded, unique minimum xo .

Thus xo is the single most fit type.



Uncountable X : the first theorem
Theorem: (constant priors) Assume π is independent of n.

1) Suppose the support of π contains δxo . If λ ∈ [0, 1), then (under additional mild
assumption on φ) then the limit process exists and has a.s. the trajectory xo , xo , . . .. If
X is compact, then Qn ⇒ δq∗ , where q∗ = δxo

2) If λ = 1, then the limit process exists and the the corresponding prior is

π̄(E ) =
1

Z

∫
E

exp[−〈φ, q〉]π(dq), Z =

∫
exp[−〈φ, q〉]π(dq), 〈φ, q〉 =

∫
φdq.

If X is compact, then Qn ⇒ π̄.

3) If λ > 1, then the limit process is ξ. If X is compact, then Qn ⇒ π.

This theorem directly generalizes the previous one with finite X , but the proof is way
more involved and much more technical.



Uncountable X : the second theorem, λ = 0

DP-prior, λ = 0, so πn = DP(cn, ᾱ) (constant mutation probability), fitness wn = w
(independent of n).

The limit process depends on the following inequality∫
w̄

w̄ − w(x)
ᾱ(dx) ≥ 1 + c

c
, w̄ = w(xo). (0.2)

The inequality relates ᾱ with w , it fails when α has very low mass around xo of w has
sharp peak at xo .



Uncountable X : the second theorem, λ = 0

Define a probability measure r∗ on X :

r∗(A) =

{
1
θ

∫
A w(x)fθ(x)ᾱ(dx), when (0.2) holds;

1
θo

( ∫
A w(x)fθo (x)ᾱ(dx) + (1− β)w̄δxo (A)

)
, when (0.2) fails

,

where

fθ(x) =
c

(1 + c − w(x)
θ )

, θ =

∫
w(x)fθ(x)ᾱ(dx), θo =

w̄

1 + c
, β =

∫
fθo (x)ᾱ(dx).

When inequality (0.2) holds, then β = 1 and r∗ � ᾱ, otherwise β < 1 and r∗ contains
atom (with mass 1− β) at xo .

Theorem: (Dirichlet prior, λ = 0) Let λ = 0 and X be compact. Then Qn ⇒ δr∗ .
Then also the limit process X1,X2, . . . exists and it is an iid process, with Xi ∼ r∗.



Uncountable X : the second theorem, λ = 0

The density (with respect to ᾱ)

w(x)f (x)

θ
=

w(x)c

θ(1 + c)− w(x)

is continuous counterpart of r∗ for discrete X (now |α| = c)

w(k)αk

θ(1 + |α|)− w(k)
,

but when (0.2) fails, an atom at xo appears !



Uncountable X : the second theorem, λ ∈ (0, 1)

DP-prior, λ ∈ (0, 1), so

πn = DP(cn1−λ, ᾱ), wn(x) = exp[−φ(x)

nλ
].

In this case, the following inequality is crucial∫
1

φ(x)− φ(xo)
ᾱ(dx) ≥ 1

c
. (0.3)

Define the probability measure q∗ on X :

q∗(A) =

{ ∫
A fθ(x)ᾱ(dx), when (0.3) holds;∫
A fθo (x)ᾱ(dx) + (1− β)w̄δxo (A), when (0.3) fails

,

fθ(x) =
c

φ(x) + c − θ
, θ =

∫
φ(x)fθ(x)ᾱ(dx), θo = c + φo , β =

∫
fθo (x)ᾱ(dx).



Uncountable X : the second theorem, λ ∈ (0, 1)

Theorem: (Dirichlet prior, λ ∈ (0, 1)) Let λ ∈ (0, 1) and X be compact and
ᾱ(xo) = 0. Then Qn ⇒ δq∗ . Then also the limit process X1,X2, . . . exists and it is an
iid process, with Xi ∼ q∗.

When (0.3) holds, then the density (with respect to ᾱ)

f (x) =
c

φ(x) + c − θ

is continuous counterpart of q∗ for discrete X (now |α| = c)

q∗(k) =
αk

φ(k) + |α| − θ

but when (0.3) fails, an atom at xo appears ! Again the limit is independent of λ! The
proofs of last two theorems are technical and based on large deviation principle on P.
Hence the need for compactness (compact X ensures compact P).
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This is now really the very last slide!

Thank you!


