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Setting & some questions

Target probability distribution π.
MCMC: X0 ∼ π0, then Xt|Xt−1 ∼ P (Xt−1, ·) for t = 1, 2, . . .

Convergence of marginals:

|πt − π| → 0.

Central limit theorem:

√
t

(
t−1

t−1∑
s=0

h(Xs)− π(h)
)
→ N (0, v(P, h)).

How to choose t such that the error is small?
How to reduce the error with parallel computers?
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Example
Prior θ ∼ Normal(0, σ2), on the location θ of Cauchy(θ, 1)
observations x1, . . . , xn.

Posterior:

π(θ|x1, . . . , xn) ∝ exp(−θ2/2σ2)
n∏
i=1
{1 + (θ − xi)2}−1

∝ exp(−θ2/2σ2)
n∏
i=1

∫
exp({1 + (θ − xi)2}ηi/2)dηi.

Gibbs sampler:

ηi|θ ∼ Exponential
(

1 + (θ − xi)2

2

)
∀i = 1, . . . , n

θ′|η1, . . . , ηn ∼ Normal
( ∑n

i=1 ηixi∑n
i=1 ηi + σ−2 ,

1∑n
i=1 ηi + σ−2

)
.

Initial distribution: π0 = Normal(0, 1).
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Example
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Example taken from “Convergence control methods for Markov chain
Monte Carlo algorithms”, Christian P. Robert, 1995.
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MCMC to approximate integrals

Integrals arise in most attempts to quantify uncertainty.

Probability of some event, P(X ∈ A) =
∫
1(x ∈ A)π(dx).

In particular, p-values P(T > tobs).

Posterior in Bayesian inference P(parameter|data).

Any latent variable leads to an integral in the likelihood.

Often these computations are not feasible analytically and
numerical methods are required.

Among them, Monte Carlo methods provide state-of-the-art
performance in high dimensions.
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Couplings

Technique to study the convergence of Markov chains.

Construct a joint process (Xt, Yt) such that Yt ∼ π for all t ≥ 0,
and marginally both chains evolve according to same kernel P .

Suppose that there exists τ a random
variable such that Xt = Yt for all t ≥ τ .

Then

‖πt − π‖TV = ‖L(Xt)− L(Yt)‖TV

≤ P(Xt 6= Yt) = P(τ > t),

where ‖ · ‖TV is the total variation distance.

Bru & Yor, Comments on the life and mathematical legacy of
Wolfgang Doeblin, 2002.
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Couplings

Coupling techniques have proved very successful, in some cases
giving precise rates of convergence.

See for example
Jerrum, Mathematical foundations of the MCMC method, 1998.

Coupling techniques provide
bounds on other metrics than TV,

‖πt − π‖W1 = inf
X,Y∼γ∈Γ(πt,π)

Eγ [d(X,Y )]

≤E[d(Xt, Yt)].

All of this appears theoretical, since we cannot sample Y0 ∼ π.
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Example: donkey walk

Consider the chain (Zt) on [0, 1] with recursion

Zt = Bt,1(1−Bt,0)Zt−1 +Bt,0,

where Bt,1 ∼ Beta(N1, 1) and Bt,0 ∼ Beta(1, N0) are
independent, and N0, N1 are positive integers.

Letac, Donkey walk and Dirichlet distributions, 2002.
Jacob, Gong, Edlefsen & Dempster, A Gibbs sampler for a class of random
convex polytopes, 2021.
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Example: donkey walk

A “common random numbers” coupling

Zt = Bt,1(1−Bt,0)Zt−1 +Bt,0

Z̃t = Bt,1(1−Bt,0)Z̃t−1 +Bt,0,

leads to

‖πt − π‖W1 ≤
(

N0
N0 + 1 ×

N1
N1 + 1

)t
E
[∣∣∣Z0 − Z̃0

∣∣∣] .

We can obtain a lower bound converging with the same rate (as
pointed out by Guanyang Wang, Rutgers University).

We obtain guidance on the choice of number of iterations t, but
there are typically intractable constants in such analyses.
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Example: conditional Bernoulli

Heng, Jacob & Ju, A simple Markov chain for independent
Bernoulli variables conditioned on their sum, on arXiv.

Let p = (p1, . . . , pN ) ∈ (0, 1)N and define wn = pn/(1− pn), the
associated odds.

Let X = (X1, . . . , XN ) ∈ {0, 1}N such that Xn ∼ Bernoulli(pn),
independently.

The conditional distribution of X given
∑N
n=1Xn = S is called

“conditional Bernoulli”, denoted by CBernoulli(p, S).

Exact sampling costs O(S ·N), i.e. N2 if S ∝ N .

Chen & Liu, Statistical applications of the Poisson-Binomial and
conditional Bernoulli distributions, Statistica Sinica, 1997.
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Example: conditional Bernoulli

A Rosenbluth–Hastings transition goes as follows:
independently sample i0 ∈ I0 = {n : xn = 0} and
i1 ∈ I1 = {n : xn = 1} uniformly;
construct proposed state y with a swap i0 ↔ i1;
accept y as next state with probability min{1, wi0/wi1}.

Chen, Dempster & Liu, Weighted finite population sampling to
maximize entropy, Biometrika, 1994.
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Relevance of conditional Bernoulli

Identical success probabilities (pn):

the chain obtained by successive swaps is known as the
Bernoulli-Laplace diffusion model;

the chain has been thoroughly studied; if S = N/2, mixing
occurs in N/8 · logN iterations (+ cutoff phenomenon).

Diaconis & Shahshahani, Time to reach stationarity in the
Bernoulli-Laplace diffusion model, SIAM Journal on
Mathematical Analysis, 1987.

Non-identical (pn): arises in various contexts in statistics, and
occurred in our research on agent-based models:

Ju, Heng & Jacob, Sequential Monte Carlo algorithms for agent-based
models of disease transmission, on arXiv.
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Assumptions

(Condition on the odds). The odds (wn) are such that
there exist ζ > 0, 0 < l < r <∞ and η > 0 such that for all
N large enough,

P (|{n ∈ [N ] : wn /∈ (l, r)}| ≤ ζN) ≥ 1− exp(−ηN).

(Condition on S). There exist 0 < ξ ≤ 1/2 and η′ > 0 such
that for all N large enough,

P (ξN ≤ S) ≥ 1− exp(−η′N).

Pierre E. Jacob Couplings of MCMC 15



Convergence rate of swap chain for conditional Bernoulli

There exist κ > 0, ν > 0, N0 ∈ N independent of N such that,
for any ε ∈ (0, 1), and for all N ≥ N0, with probability at least
1− exp(−νN), we have

‖x(t) − CBernoulli(p, S)‖TV ≤ ε for all t ≥ κN log(N/ε).

A simple Markov chain provides samples for a cheaper cost
than exact sampling: N logN versus N2.

Coupling technique sharp enough to establish a mixing
time in N logN .

But constants appearing in these results are not useful.
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Markovian couplings of Markov chains

Moving on,
we will look at practical couplings of MCMC algorithms,
or coupling MCMC algorithms for practical reasons.

Consider two chains, propagated using a coupled kernel P̄ .

If (X ′, Y ′) ∼ P̄ ((X,Y ), ·), then

X ′|(X,Y ) ∼ P (X, ·),

Y ′|(X,Y ) ∼ P (Y, ·).
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Markovian couplings of Markov chains

We will consider coupled kernels such that

P̄ ({X ′ = Y ′}|X,Y ) > 0 for at least some X,Y ,

P̄ ({X ′ = Y ′}|{X = Y }) = 1.

Given an MCMC algorithm, we will try to design a coupled
kernel, and aim at obtaining short “meeting times”.

Pierre E. Jacob Couplings of MCMC 18



Example of coupled kernel

Gibbs sampler:

ηi|θ ∼ Exponential
(

1 + (θ − xi)2

2

)
∀i = 1, . . . , n

θ′|η1, . . . , ηn ∼ Normal
( ∑n

i=1 ηixi∑n
i=1 ηi + σ−2 ,

1∑n
i=1 ηi + σ−2

)
.

Start from θ(1), θ(2), possibly unequal.

Generate η(1), η(2) using common uniforms.

Implement a maximal coupling to sample θ′(1), θ′(2),
i.e. maximize P(θ′(1) = θ′(2)|η(1), η(2)).
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A maximal coupling of two Normals
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A maximal coupling for two tractable distributions

Input: p and q.
Output: pairs (X,Y ) from max coupling of p and q.

1 Sample X ∼ p and W ∼ Uniform(0, 1).

2 If W ≤ q(X)/p(X), set Y = X.

3 Otherwise, sample Y ? ∼ q and W ? ∼ Uniform(0, 1)
until W ? > p(Y ?)/q(Y ?), then set Y = Y ?.

e.g. Thorisson, Coupling, stationarity, and regeneration, 2000,
Chapter 1, Section 4.5.
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Example of coupled trajectories
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Practical couplings in realistic MCMC settings

Niloy Biswas, Anirban Bhattacharya, Pierre E. Jacob & James
Johndrow, Coupling-based convergence assessment of some Gibbs
samplers for high-dimensional Bayesian regression with
shrinkage priors, 2022.

Francisco J. R. Ruiz, Michalis K. Titsias, Taylan Cemgil &
Arnaud Doucet, Unbiased gradient estimation for variational
auto-encoders using coupled Markov chains, 2020.

Brian L. Trippe, Tin D. Nguyen, Tamara Broderick, Optimal
transport couplings of Gibbs samplers on partitions for unbiased
estimation, 2021.

Luke J. Kelly, Robin J. Ryder & Grégoire Clarté, Lagged
couplings diagnose Markov chain Monte Carlo phylogenetic
inference, 2022.
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Summary

We can study the convergence of a Markov chain to its
limiting distribution using couplings,

and we might be able to generate pairs of Markov chains,
that can exactly meet after a random number of iterations.

Next: new Monte Carlo methods employing such pairs of chains.
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Lagged coupled chains

Generate two chains (Xt) and (Yt) as follows:

sample X0 and Y0 from π0 (independently, or not),

sample Xt|Xt−1 ∼ P (Xt−1, ·) for t = 1, . . . , L,

for t ≥ L+ 1, sample
(Xt, Yt−L)|(Xt−1, Yt−L−1) ∼ P̄ ((Xt−1, Yt−L−1), ·).

Denote by τ the “meeting time” such that Xt = Yt−L for t ≥ τ .

Note that Xt
d= Yt at all times t ≥ 0.
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Unbiased estimators from lagged chains
Here lag L = 1 for simplicity. Write limit as a telescopic sum,

Eπ[h(X)] = lim
t→∞

E[h(Xt)]

= E[h(X0)] +
∞∑
j=1

E[h(Xj)− h(Xj−1)].

Since for all t ≥ 0, Xt and Yt have the same distribution,

= E[h(X0)] +
∞∑
j=1

E[h(Xj)− h(Yj−1)].

If we cross fingers,

= E

h(X0) +
∞∑
j=1

(h(Xj)− h(Yj−1))

 .
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Unbiased estimators from lagged chains

After some variance reduction tricks and manipulations, an
unbiased estimator of Eπ[h(X)] is given by

1
m− k + 1

m∑
t=k

h(Xt)

+
τ−1∑

`=k+L
min

(
1, d(`− k)/Le

m− k + 1

)
(h(X`)− h(Y`−L)),

where user-chosen parameters include L, k and m. Tuning
largely an open question.

Benefits of larger lags: comment by Vanetti & Doucet in
discussion paper of Jacob, O’Leary & Atchadé, 2020.
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Do we care about unbiased estimators?

In classical point estimation, unbiasedness is not crucial.

Larry Wasserman in “All of Statistics” (2003) writes:
Unbiasedness used to receive much attention but these
days is considered less important.

On the other hand, Jeff Rosenthal in “Parallel computing and
Monte Carlo algorithms” (2000) writes

When running parallel Monte Carlo with many comput-
ers, it is more important to start with an unbiased (or
low-bias) estimate than with a low-variance estimate.
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Upper bounds using couplings

Triangle inequalities with steps of length L between πt and π,

‖πt − π‖TV ≤
∞∑
j=1
‖πt+jL − πt+(j−1)L‖TV

≤
∞∑
j=1

P(Xt+jL 6= Yt+(j−1)L).

Using coupled lagged chains we estimate P(Xt+jL 6= Yt+(j−1)L)
by 1(Xt+jL 6= Yt+(j−1)L), for all t, j.

Then, upon an exchange of expectation and limit,

‖πt − π‖TV ≤ E[max(0,
⌈
(τ − L− t)/L

⌉
)].

Then we estimate the expectation by an empirical average over
independent replicates.
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Recall the Cauchy-Normal example
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TV upper bounds in the Cauchy-Normal example
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Time marginals in the Cauchy-Normal example
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Time marginals in the Cauchy-Normal example

0.0

0.1

0.2

0.3

−20 −10 0 10 20 30

θ

de
ns

ity
iteration 30

Pierre E. Jacob Couplings of MCMC 34



Time marginals in the Cauchy-Normal example
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Time marginals in the Cauchy-Normal example
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Example: large-scale Bayesian regression

Biswas, Bhattacharya, Jacob & Johndrow, Coupling-based
convergence assessment of some Gibbs samplers for high-dimensional
Bayesian regression with shrinkage priors, 2022.

Linear regression setting, n rows, p columns with p� n.

Y ∼ N (Xβ, σ2In),
σ2 ∼ InverseGamma(a0/2, b0/2),
ξ−1/2 ∼ Cauchy+,

for j = 1, . . . , p βj ∼ N (0, σ2/ξηj), η
−1/2
j ∼ t(ν)+.

Global precision ξ, local precision ηj for j = 1, . . . , p.
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Example: large-scale Bayesian regression

Gibbs sampler:
For j = 1, . . . , p, ηj given β, ξ, σ2 can be sampled from,
exactly or by slice sampling.
Given η, we can sample β, ξ, σ2:

ξ given η using RH step,
σ2 given η, ξ from InverseGamma,
β given η, ξ, σ2 from p-dimensional Normal.

Algorithm has n2p cost per iteration.

Coupling strategy involves maximal couplings and common
random numbers, combined in certain ways depending on
distance between chains.

Genome-wide association study with n = 2, 266 and p = 98, 385.
Outcome: average number of days for silk emergence in maize.
Covariates: single nucleotide polymorphisms of maize.
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Example: large-scale Bayesian regression
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Central limit theorem

Markov kernel P , test function h, might satisfy

√
t

(
t−1

t−1∑
s=0

h(Xs)− π(h)
)
→ N (0, v(P, h)),

where v(P, h) is called the asymptotic variance.

When the chain is at stationarity (i.e. Xt ∼ π for all t) we have

v(P, h) = V?(h(X0)) + 2
∞∑
t=1

Cov?(h(X0), h(Xt)).

Difficult to approximate v(P, h) a priori, because MCMC chains
are not stationary and the sum has infinitely many terms.
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The Poisson equation

Write Ph(x) =
∫
P (x, dx′)h(x′) = E[h(X1)|X0 = x].

A function h̃ in L1(π) is said to be a solution of the Poisson
equation associated with h and P , if

h̃− Ph̃ = h− π(h).

For brevity we say that h̃ is fishy.

If
∑
t≥0 ‖P t{h− π(h)}‖L1(π) <∞ then fishy functions exist.

Marie Duflo, Opérateurs potentiels des châınes et des processus de
Markov irréductibles, 1970.
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Central limit theorem

Aiming for a CLT for Markov chain ergodic averages, write

t−1∑
s=0
{h(Xs)− π(h)} =

t∑
s=1

{
h̃(Xs)− Ph̃(Xs−1)

}
+ h̃(X0)− h̃(Xt).

Then apply the central limit theorem for martingale difference
sequences, leading to the asymptotic variance

v(P, h) = E?[{h̃(X1)− Ph̃(X0)}2].

Chapter 21 in
Douc, Moulines, Priouret & Soulier, Markov chains, 2018.
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Asymptotic variance

The more familiar form of the asymptotic variance is

lim
t→∞

V
(
t−1/2

t−1∑
s=0

h(Xs)
)

= V?(h(X))+2
∞∑
s=1

Cov? (h(X0), h(Xs)) .

This expression is equivalent to E?[{h̃(X1)− Ph̃(X0)}2].

Use h̃ =
∑∞
t=0 P

t{h− π(h)}, and h̃ = h− π(h) + Ph̃,

E?[{h̃(X1)− Ph̃(X0)}2] = π({h− π(h)}2) + 2π({h− π(h)} · Ph̃).
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Asymptotic bias

Consider the bias of the average t−1∑t−1
s=0 h(Xs).

Its expectation is t−1∑t−1
s=0 P

sh(x0), given X0 = x0 ∈ X.

Therefore

lim
t→∞

t×
{
Ex0 [t−1

t−1∑
s=0

h(Xs)]− π(h)
}

= h̃(x0),

where h̃ is the fishy function as before.

Kontoyiannis & Dellaportas, Notes on using control variates for
estimation with reversible MCMC samplers, 2009.
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Unbiased estimation of fishy functions

Choose an arbitrary y ∈ X. The function

x 7→ h̃(x) =
∞∑
t=0

{
P th(x)− P th(y)

}
,

is fishy. It wants to be estimated with coupled Markov chains.

If we set X0 = x, Y0 = y, and generate Xt, Yt such that{
Xt|Xt−1 ∼ P (Xt−1, ·)
Yt|Yt−1 ∼ P (Yt−1, ·)

and ∀t ≥ τx,y Xt = Yt,

then

H̃(x) =
τx,y−1∑
t=0
{h(Xt)− h(Yt)} ,

has expectation equal to h̃(x).
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Unbiased estimation of the asymptotic variance

We can write

v(P, h) = 2π({h− π(h)}h̃)− v(π, h),

where v(π, h) = π(h2)− π(h)2

We can obtain unbiased approximations π̂ of π, and we can
estimate h̃ unbiasedly, point-wise.

Estimating v(P, h) is an exercise in “nested Monte Carlo”.
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Unbiased estimation of the asymptotic variance

1 Obtain π̂(1) and π̂(2), two independent approximations of π.

2 Write π̂(1)(·) =
∑N
n=1 ωnδZn . For r = 1, . . . , R,

sample `(r) ∼ (ξ1, . . . , ξN ),
generate H̃(r) with expectation h̃(Z`(r)).

3 Estimate

π({h− π(h)}h̃) with R−1
R∑
r=1

w`(r)(h(Z`(r))− π̂(2)(h))H̃(r)/ξ`(r) ;

v(π, h) with 1
2{π̂

(1)(h2) + π̂(2)(h2)} − π̂(1)(h)× π̂(2)(h).

Douc, Jacob, Lee & Vats,
Estimation of fishy functions with couplings, on-going work.
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Discussion

Some basic questions about MCMC are still largely open,
such as: “how long should we run the chain?”

Couplings are powerful for theoretical analysis
but they can also be implemented, leading to new methods.

Thank you all for listening!

Collaborators mentioned in these slides: Yves Atchadé, Anirban
Bhattacharya, Niloy Biswas, Arthur Dempster, Randal Douc, Arnaud
Doucet, Paul Edlefsen, Ruobin Gong, Jeremy Heng, James Johndrow,
Nianqiao Ju, Anthony Lee, John O’Leary, Paul Vanetti, Dootika Vats,
Guanyang Wang.
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