
Neural Ordinary Differential Equations and
universal systems

Argimiro Arratia
argimiro@cs.upc.edu

http://www.cs.upc.edu/~argimiro/

CS, Univ. Politécnica de Catalunya (Barcelona Tech)
EcoDep Seminary, CY University, Paris

October 19, 2022

A. Arratia NODE and universal systems

mailto:argimiro@cs.upc.edu
http://www.cs.upc.edu/~argimiro/
http://doukhan.perso.cyu.fr/seminary.html

Neural Networks (feed-forward)

x1

x2

x3

h2

h3

h1

h4

y

Figure: A 3-4-1 feed forward neural network with one hidden layer

x1, x2, x3 input nodes; y output node;
h1, . . . , h4 hidden nodes (neurons) in hidden layer;
hj goes active and transmit a signal to y if zj =

∑
i→j ωijxi > αj .

The signal is produced by activation function

A. Arratia NODE and universal systems

Neural Networks

Single hidden layer case
We have d inputs x = (x1, . . . , xd), one (or many outputs), and
one hidden layer with H1 units. Set H0 = d. For a single output:

F (x) = ψ

 H1∑
i=1

w2
i ϕ

 H0∑
j=1

w1
ijxj + b1i

+ b2

 (1)

Put

h1i =

H0∑
j=1

w1
ijxj + b1i , i = 1, 2, . . . ,H1 (2)

ϕ(·) and ψ(·) are nonlinear activation function. (e.g.
ReLU(x) = max(0, x))

A. Arratia NODE and universal systems

Nnet: Activation functions

A. Arratia NODE and universal systems

Deep Neural Networks

Deep Neural Networks (aka. multilayer neural networks)

A. Arratia NODE and universal systems

Deep Neural Networks

In vectorial notation (2) is expressed as

h(1)(x) = W (1)x + b(1) ∈ RH1

And the output of 1-layer Nnet (Eq. (1)) as

F(x) = ψ(W (2)ϕ(h(1)(x)) + b(2))

where ϕ(z) = (ϕ(z1), . . . , ϕ(zH1)) and ψ are activation functions
(ψ could be ϕ or identity or other) and z ∈ RH1

A. Arratia NODE and universal systems

Deep Neural Networks

If there are D > 1 layers, each labelled by µ = 1, . . . , D, and with
Hµ neurons in each, the recursion can be written as

h(0)(x) = x

h(µ)(x) = W (µ)ϕ(h(µ−1)(x)) + b(µ).

And the final output is the vector

F(x) = ψ(h(D)(h(D−1)(. . .h(2)(h(1)(x)))))

Forward evaluation (training)

consists of choosing weights and biases such that the output
approaches the actual values associated to input

A. Arratia NODE and universal systems

Nnet Backward propagation

Let training data {(x[i],y[i]) : i = 1, . . . , N} of N inputs
x[i] ∈ RH0 and corresponding N outputs y[i] ∈ RHD .

The parameters (e.g. weights and biases) are chosen so that some
error measure is minimized (e.g. mean square error MSE).

In general we have cost function C on parameters θ and measure of
error

Cost(θ) =
1

N

N∑
i=1

C(y[i] − F (x[i]))

(e.g. in the case of quadratic cost, the objective to be minimized is

Cost(θ) =
1

N

N∑
i=1

1

2
||y[i] − F (x[i])||22

A. Arratia NODE and universal systems

Optimization through Gradient Descent

Expand the cost objective using Taylor series (θ ∈ Rs):

Cost(θ + ∆θ) ≈ Cost(θ) +

s∑
i=1

∂Cost(θ)

∂θi
∆θi

= Cost(θ) +∇Cost(θ)>∆θ

where ∇Cost(θ) is the gradient vector and need to choose ∆θ so
that ∇Cost(θ)>∆θ is most negative at each iteration. This is
achieved by updating with small step size η:

θ → θ − η∇Cost(θ)

layer through layer (gradient descent)

A. Arratia NODE and universal systems

Summary: Neural Network paradigm

Forward evaluation (training)

F(x) = ψ(h(D)(h(D−1)(. . .h(2)(h(1)(x)))))

Measure of quality of approximation (Cost function)

Cost(θ) =
1

N

N∑
i=1

C(y[i] − F (x[i]))

Backward propagation to improve approximation. By gradient
descent update through layers

θ → θ − η∇Cost(θ)

Remark: The functions in Cost are known and differentiable.

A. Arratia NODE and universal systems

A note on the universality of Neural Networks

The Representation Theorem (Hornik et al., Cybenko, 1989-91)

Feed-forward network with one hidden layer of large enough width
and a “squashing” activation function can approximate any

integrable function to any accuracy.a

aHornik, Stinchcombe, White (1989). Multilayer feedforward networks are
universal approximators. Neural Networks 2, 359-366

Remark (Bruno Després) Let f ∈ C1(R)

f(x) =

∫ x

−∞
f ′(y)dy =

∫
R
H(x− y)f ′(y)dy

≈
J∑

j=−J
φ

(
x

ε
− j∆x

ε

)
f ′(j∆x)∆x =

J∑
j=−J

ωjφ(ajx+ bj)

where H(x) is Heaviside and φ a sigmoid to approximate H.
Notice that a, b tend to infinity with precision.

A. Arratia NODE and universal systems

From ResNet to NODE

• Residual Network

ht+1 = ht + f(ht, θ)

• Neural ODEa

ht+1 − ht
∆t

=
f(ht, θ, t)

∆t
→ dz

dt
= f(z, θ, t)

aChen et al (2018) Neural ODE. In: Advances in
Neural Information Processing Systems, 31

A. Arratia NODE and universal systems

Model as an IVP

The model has become an Initial Value Problem.
Let z0 := z(t0) = x. Forward evaluation is

F (z0) = z(tN) = z0 +

∫ tN

t0

dz

dt
dt = z0 +

∫ tN

t0

f(z, θ, t) dt

A. Arratia NODE and universal systems

Forward pass computes integration with ODE solver

For instance use Euler method to convert integral into many steps
of addition

z(t+ ε) = z(t) + ε · f(z(t), θ)

with ε < 1.
Such ODE solvers are often numerically unstable (e.g. underflow
error due to small step size, etc).
So, some other more sophisticated (black-box) ODE solvers are
used.
Remark. f(z(t), θ), call it the ODE function, implicitly given from

data, approximates
dz

dt

A. Arratia NODE and universal systems

Optimization

We can optimize: θ, t0, tN and z0.

Cost function

Cost (z(tN)) = Cost

(
z(t0) +

∫ tN

t0

f(z(t), θ, t) dt

)
= Cost (ODESolver(z(t0), f, θ, t0, tN))

L1, L2, . . .

We need to calculate the following gradients

dCost

dz(t0)
,
dCost

dθ
,
dCost

dt0
,
dCost

dtN

A. Arratia NODE and universal systems

Adjoint sensitivity method I
As en example ∇θCost. We want to find

min
θ
Cost(z(tN)) s.t.

dz

dt
= f(z, θ, t)

Construct Lagrangian

L = Cost(z(tN))−
∫ tN

t0

λ(t)

(
dz

dt
− f(z, θ, t)

)
dt

integration by parts and chain rule differentiation gives

dCost(ztN)

dθ
=

∫ t0

tN

−a(t)
∂f

∂θ
dt

with a(t) the adjoint state, which is solution of IVP

a(tN) =
dCost(ztN)

dtN
,

da

dt
= −a(t)

∂f

∂z

Further algebraic manipulation yields gradient of cost w.r.to θ is solution
at time t0 of IVP

aθ(tN) = 0,
daθ
dt

= −a(t)
∂f

∂θ

A. Arratia NODE and universal systems

Adjoint sensitivity method II

Similar calculations yield that the gradients of Cost w.r.to zt0 , t0
and θ, all result from evaluating IVPs on corresponding adjoint
states at time t0.
Define augmented state s(t) := [a(t), aθ(t), at(t)] as concatenation
of adjoints for z, θ and t

A. Arratia NODE and universal systems

Adjoint sensitivity method III

Adjoint state at t0

s(t0) :=

[
dCost(z(tN))

dz(t0)
,
dCost(z(tN))

dθ
,−dCost(z(tN))

dt0

]
Solving backwards Initial Value Problem

s(tN) =

[
dCost(ztN)

dztN
, 0, −a(tN)f(ztN , θ, tN)

]
ds(t)

dt
= −a(t)

∂f

∂[z, θ, t]

A. Arratia NODE and universal systems

Neural ODE paradigm

A Neural network with an ODE inside

Forward evaluation: an Initial Value Problem

F (z0) = z(tN) = z0+

∫ tN

t0

f(z, θ, t) dt = ODESolver(z(t0), f, θ, t0, tN)

Training (optimization): adjoint sensitivity method

Remark. The space complexity of Adjoint method is O(1),
whereas using backpropagation to train NODEs has space
complexity proportional to number of ODEsolver steps. Their time
complexities are similar.
Hence, we can train NODEs efficiently.

A. Arratia NODE and universal systems

Advantages and drawbacks

Advantages

Memory savings

Adaptive computation

Speed and precision
trade-off

Continuous-time time series
models

Drawbacks

Can only learn
homeomorphisms

Deterministic dynamics

Speed

A. Arratia NODE and universal systems

Traditional approach to Neural ODEs

Traditional approach used by most authors employs Neural
Networks to learn the ODE function f(z, θ, t)

dy

dt
= NeuralNetwork(y).

× Circling back to using NNs.
× turns the model inside-out: an ODE with a Neural Network

inside!
X Able to generate universal flows. And (in principle) has lots of

potential in describing complex dynamical systems (more
later).

A. Arratia NODE and universal systems

Our approach to Neural ODEs
(Joint work with Carlos Ortiz, Marcel Romańı, 2022)

Our proposed System of n ODEs is given by

dy

dt
=

−x...
−x

+ z(x) with y(0) =

x...
x

It generates a (trivial) flow

ϕ(x, t) = (1− t)

x...
x

+ t z(x),

where ϕ(x, 1) = z(x) is the solution at x of the IVP

dz

dt
= L (z, θ) with z(0) = z0

A. Arratia NODE and universal systems

Proposed families of SODEs

There is evidence that these families of SODEs are universal

Lotka-Volterra systems

dzi
dt

= λizi + zi

n∑
j=1

Aijzj , λi, Aij ∈ R, 1 ≤ i, j ≤ n

Riccati systems

dzi
dt

= Ai+

n∑
j=1

Bijzj+
n∑

j,k=1

Cijkzjzk, Ai, Bij , Cijk ∈ R, 1 ≤ i, j, k ≤ n

S-systems

dzi
dt

= αi

n∏
j=1

z
gij
j −βi

n∏
j=1

z
hij
j , gij , hij ∈ R, αi, βi ∈ R+, 1 ≤ i, j ≤ n

A. Arratia NODE and universal systems

Setup of the experiments

Goal: approximating g : R→ R

SODEs: Lotka-Volterra, Riccati, S-systems

n = 2, 5, 10

Domain: [0, 3] ∈ R
Functions: Constant, x, x2, sin(3x), exp(x/2), 3 log(x+ 1),
3/(x+ 1)

A. Arratia NODE and universal systems

Results I

Figure: Comparison of the computation time to approximate different
functions until εr < 0.01 grouped by model, n = 2.

A. Arratia NODE and universal systems

Results II

Figure: Computation time to approximate functions until εr < 0.01 using
a Lotka-Volterra system with n = 2, 5 and 10.

A. Arratia NODE and universal systems

Results III

Figure: Computation time to approximate functions until εr < 0.01 using
a Riccati system with n = 2, 5 and 10.

A. Arratia NODE and universal systems

Results IV

Figure: Computation time to approximate functions until εr < 0.01 using
an S-system with n = 2, 5 and 10.

A. Arratia NODE and universal systems

Function plots I

(a) n = 2 (b) n = 5

Figure: Full output of Neural ODEs approximating sin(3x).

A. Arratia NODE and universal systems

Function plots II

(a) εr = 0.01 (b) εr = 0.0005

Figure: Approximation of the function f(x) = sin 3x.

A. Arratia NODE and universal systems

Function plots III

(a) εr = 0.01 (b) εr = 0.00001

Figure: Approximation of the function f(x) = expx/2.

A. Arratia NODE and universal systems

Function plots IV

(a) εr = 0.01 (b) εr = 0.0001

Figure: Approximation of the function f(x) = 3/(x+ 1).

A. Arratia NODE and universal systems

Conclusions

Approximating capabilities of the families of SODE

Input is very restricted in our framework

Stiffness of equations lead to instabilities

Further research should aim at benchmark problems

A. Arratia NODE and universal systems

Use cases of NODE (possibly relevant to EcoDep)

(Disclaimer: all these employ the twisted model
dy

dt
= NNet(y).)

A tutorial: Forecasting the weather with neural ODEs, by
Sebastian Callh https://sebastiancallh.github.io/

post/neural-ode-weather-forecast/
Some research papers:

Hwang et al (2021). Climate Modeling with Neural Diffusion
Equations - arXiv
Bonnaffe et al (2020) Neural ordinary differential equations for
ecological and evolutionary time series analysis. Methods in
Ecology and Evolution
Raj Dandekar, Chris Rackauckas and George Barbastathis
(2020). A Machine Learning-Aided Global Diagnostic and
Comparative Tool to Assess Effect of Quarantine Control in
COVID-19 Spread. Patterns, v1 (9)

The work by Dandekar et al, is more in line of augmented dynamical

systems with Neural Networks: they define a epidemic model SIR with

extra compartment to account for Quarantine individuals. This Q

compartment is modeled by a Neural network
A. Arratia NODE and universal systems

https://sebastiancallh.github.io/post/neural-ode-weather-forecast/
https://sebastiancallh.github.io/post/neural-ode-weather-forecast/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671652/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671652/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671652/

Tools

Julia: DiffEqFlux.jl, DifferentialEquations.jl , . . . ,
all available in repository SciML (SciML Open Source Scientific
Machine Learning) https://github.com/SciML

Other: SciMLConference 2022: https://scimlcon.org/2022/talks/

A. Arratia NODE and universal systems

https://github.com/SciML

Neural Ordinary Differential Equations and
universal systems

Argimiro Arratia
argimiro@cs.upc.edu

http://www.cs.upc.edu/~argimiro/

CS, Univ. Politécnica de Catalunya (Barcelona Tech)
EcoDep Seminary, CY University, Paris

October 19, 2022

A. Arratia NODE and universal systems

mailto:argimiro@cs.upc.edu
http://www.cs.upc.edu/~argimiro/
http://doukhan.perso.cyu.fr/seminary.html

