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@ GARCH and integer-valued GARCH
© Models for non-stationary count processes

© Mixing properties of INGARCH processes
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GARCH and integer-valued GARCH
(Classical) GARCH:

Xt = o0t¢y,

2 2 2
oy = f(Xq,..., X vat Is---

7U?—q)7

where f: R'frq — Ry, (e¢)rez sequence of i.i.d. rv's, Ee? = 1.
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GARCH and integer-valued GARCH
(Classical) GARCH:

Xt = o0téy,
2 2 2 2
0y = f(Xt—la“ Xt p'Ut 1o agt—q)a

where f: R'frq — Ry, (e¢)rez sequence of i.i.d. rv's, Ee? = 1.
Integer-valued GARCH (INGARCH):

PXt|Xt71’Xt72a~~- — Q(Ut),

oy = f(Xt—L---7Xt—p;0t—17-'-70t—q),
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oy = f(Xt—la c Xt p’ Ut 15 agt—q)a

where f: R'frq — Ry, (e¢)rez sequence of i.i.d. rv's, Ee? = 1.

Integer-valued GARCH (INGARCH):

PXt|Xt71’Xt72a~~- _ Q(O't),

oy = f(Xt—17'-~7Xt—p;Ut—17-'-7Ut—q),

{Q(c): o >0} some family of distributions on Np.
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GARCH and integer-valued GARCH
(Classical) GARCH:

Xt = o0téy,
2 2 2 2
oy = f(Xt—la c Xt p’ Ut 15 agt—q)a

where f: R'frq — Ry, (e¢)rez sequence of i.i.d. rv's, Ee? = 1.

Integer-valued GARCH (INGARCH):

PXt|Xt71,Xt72a~~- _ Q(O't),

oy = f(Xt—L-H7Xt—p;Ut—17-'-7Ut—q),

{Q(c): o >0} some family of distributions on Np.

Poisson-INGARCH: Q(c) = Poi(o) ~ o = var(Xe | Xe—1, Xe—2,...)
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A model for count series with a strong trend
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Figure: left: Monthly immigration numbers for the Netherlands with increasing
trend and strongly increasing seasonality; right: daily COVID-19 infection
numbers from Italy with explosive trend.
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Poisson-INGARCH and trend

Xt | “past” ~ POi(O’t); Ot4+1 = atXt + th't + Zt,

(Zt)ten, exogenous process, possibly Z; P .
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Poisson-INGARCH and trend

Xt | “past” ~ POi(O’t); Ot4+1 = atXt + th't + Zt,

(Zt)ten, exogenous process, possibly Z; P, 5. Then

E(X¢ | ot) = o4, vvar(Xe | o¢) = /ot
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Poisson-INGARCH and trend

Xt | “past” ~ POi(O’t); Ot4+1 = atXt + th't + Zt,

(Zt)ten, exogenous process, possibly Z; P, 5. Then

E(Xt | Ut) = Ot¢, \/V&I‘(Xt | gt) = \/U_t

If o0 —2 00 as t — oo, then var(Xe | 0¢)/E (X | o¢) LY
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Poisson-INGARCH and trend

Xt | “past” ~ POi(O’t); Ot4+1 = atXt + th't + Zt,

(Zt)ten, exogenous process, possibly Z; P, 5. Then

E(Xt | Ut) = Ot¢, \/V&I‘(Xt | gt) = \/U_t

If oy P, 50 as t — oo, then var(X | o¢)/E (X | 0¢) LY

Possible issues:

@ contradicts impression from certain data (e.g. Covid 19 infection
numbers)
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Poisson-INGARCH and trend

Xt | “past” ~ POi(O’t); Ot4+1 = atXt + btUt + Zt,

(Zt)ten, exogenous process, possibly Z; P, 5. Then

E(Xt ‘ Ut) = Ot¢, \/V&I‘(Xt | gt) = \/U_t

If oy P, 50 as t — oo, then var(X | o¢)/E (X | 0¢) LY

Possible issues:

@ contradicts impression from certain data (e.g. Covid 19 infection
numbers)

o if \/var(X; | 00)/E(X: | o¢) 5 0, then
> dry(Poi(3.), Poi(3})) == 1,

» mixing properties deteriorate as t — oo
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A remedy: (nearly) scale-invariant distributions on Ny

Classical GARCH:
X | “past” ~ N(0,0¢)

~ E(|Xe|| “past”) = v/2/m \/var(X|“past”).
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A remedy: (nearly) scale-invariant distributions on Ny

Classical GARCH:
X | “past” ~ N(0,0¢)

s E(|Xe|| “past”) = v/2/m \/var(X|“past”).

Let Y be a non-negative r.v. with a bounded density p, EY =1,
EY? < 0.

Then (P"Y)U is a scale-invariant family.

>0
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A remedy: (nearly) scale-invariant distributions on Ny

Classical GARCH:
X | “past” ~ N(0,0¢)

s E(|Xe|| “past”) = v/2/m \/var(X|“past”).

Let Y be a non-negative r.v. with a bounded density p, EY =1,
EY? < 0.

Then (P"Y)0> is a scale-invariant family.

0

Integer-valued counterparts:
X, = loY]

(Xo =k = oY €[k, k+1))
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Examples

e Y ~ Exp(1), then

p=1—e

—1/c

P(X, = k) = P(oY € [k k+1)) = p(1—p)*,
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Examples

e Y ~ Exp(1), then
P(X, = k) = P(oY € [k k+1)) = p(1—p)*,

p= 1_e—1/0'

e Z ~ N(0,7/2), then Y :=|Z| has a half-normal distribution,
EY =1, X, = |oY]
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The proposed model

X | “past” 4 oY,
Ot = f(Ut—LXt—l)'Zt—ly

(Z:)+ sequence of exogenous covariates

=] F
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The proposed model

X | “past” 4 lotY ], (2.1a)
ot = f(O't_l,Xt_l) : Zt_]_, (21b)

(Z:)+ sequence of exogenous covariates

Then
dTv(PX”, PX"') < const. - | In(a) — In(a’)‘ Vo, o >0

—> change over to logarithmic scale
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The proposed model

X | “past” 4 lotY ], (2.1a)
ot = f(O't_l,Xt_l) . Zt_]_, (21b)

(Z:)+ sequence of exogenous covariates
Then
drv(P*7,P%") < const.-|In(c) — In(¢’)|  Vo,0’ >0
—> change over to logarithmic scale

(2.1b) equivalent to

In(o¢) = In (f(at_l,Xt_l)) + In(Z;-1) (2.1¢)
=:C1
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Covid data
Model:

Xt | “past”

In(o¢)

Neumann (Jena)
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Covid data
Model:

X, | “past” L |ovY],
In(cr) = aln(o¢e—1) + b In(Xe—1 +1) + cIn(t).
Then

Ein(X;4+1) = In(¢%) + 0(1); 6 = c/(1—a—b).
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Covid data
Model:

X, | “past” L |ovY],
In(cr) = aln(o¢—1) + bIn(Xe—1+1) + c In(t).
Then

Ein(X;4+1) = In(¢%) + 0(1); 6 = c/(1—a—b).

Least squares fit: 5,, =248, t— tg"

o 4

T T T T T
010ct21 01Mov21 01Dec21 01Jan22 01Feb22

Italy: daily COVID-18 infection numbers
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Time
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Mixing vs. ergodicity

Applications in statistics: consistency, asymptotic normality,
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Mixing vs. ergodicity

Applications in statistics: consistency, asymptotic normality, ...
@ (strictly) stationary processes

ergodicity (plus some structure) suffices: ergodic theorem, CLT for
martingale differences

@ non-stationary processes
ergodicity does not help, mixing (or "weak dependence”)
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Absolute regularity (3-mixing)
e (Q,F,P) probab. space, A, B sub-o-algebras of F. Then

B(A,B) = E |sup |[P(B|.A) — P(B)|| .
BeB
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Absolute regularity (3-mixing)
e (Q,F,P) probab. space, A, B sub-o-algebras of F. Then

B(A,B) = E |sup |P(B|.A) — P(B)||.
BeB

@ Y = (Y:)tez stochastic process on (€2, F, P). Then
BY(k,n) = B(o(Ye: t < k),o(Ye: t>k+n)),
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Absolute regularity (3-mixing)
e (Q,F,P) probab. space, A, B sub-o-algebras of F. Then

B(A,B) = E |sup |P(B|.A) — P(B)||.
BeB

@ Y = (Y:)tez stochastic process on (€2, F, P). Then

,By(k,n) = B(o(Ye: t<k),0(Y:: t>k+n)),
BY(n) = sipﬂy(k,n)

= SLlipE[SLép\P((YHn, Yiint1,---) € C| Yk, Ye—1,--)

— P((Yk+n, Yk+n+17 .. ) S C)H
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Absolute regularity (3-mixing)
e (Q,F,P) probab. space, A, B sub-o-algebras of F. Then

B(A,B) = E |sup |P(B|.A) — P(B)||.
BeB

@ Y = (Y:)tez stochastic process on (€2, F, P). Then

,By(k,n) = B(o(Ye: t<k),0(Y:: t>k+n)),
BY(n) = sipﬂy(k,n)

= SLIipE[s%p\P((Yk+n, Yeinits---) € C | Yi, Yie1,-..)

— P((Yk+n, Yk+n+17 .. ) S C)H

Y is absolutely regular (/5-mixing) if
Y
pr(n) =2 0.
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Mixing of classical GARCH

o Linear GARCH(p,q): Boussama (1998)

o Nonlinear GARCH(1,1): Carrasco & Chen (2002), Francq & Zakoian
(2006)
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Mixing of classical GARCH

o Linear GARCH(p,q): Boussama (1998)

o Nonlinear GARCH(1,1): Carrasco & Chen (2002), Francq & Zakoian
(2006)

Typical result:

((Xe,0¢)), absolutely regular (8-mixing), 3X:)(n) = O(p"), for some
p <1l
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Mixing of classical GARCH

o Linear GARCH(p,q): Boussama (1998)

o Nonlinear GARCH(1,1): Carrasco & Chen (2002), Francq & Zakoian
(2006)

Typical result:

((Xe,0¢)), absolutely regular (8-mixing), 3X:)(n) = O(p"), for some
p <1l

Method of proof:

o ((Xt,0¢)), time-homogeneous Markov chain
@ MC technology can be used

Neumann (Jena) Log-linear count series February 12-14, 2024 12/18



Here: Mixing of INGARCH(1,1)

o ((Xt,01)), is a Markov chain
e However: (0¢): not mixing in general (see next slide)

@ (Xt)¢ has infinite memory, is not a MC
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Here: Mixing of INGARCH(1,1)

o ((Xt,01)), is a Markov chain
e However: (0¢): not mixing in general (see next slide)

@ (Xt)¢ has infinite memory, is not a MC

Consequences:
@ Cannot use MC technology; use coupling arguments instead

@ Revision of (a possible) original goal: Prove mixing only for the count
process (X¢)¢
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Non-mixing of (o);
Counterexample (Neumann, 2011, Bernoulli):

pXelXe1 X2 — Poi(a,),  op = Xe—1/2 + g(0¢-1),
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Non-mixing of (o);
Counterexample (Neumann, 2011, Bernoulli):

pXelXe-1 X2 — Poi(ot), or=Xi—1/2+ g(ot-1),

where
e g:[0,00) — [0, 00) strictly monotone
e 0<g(o)<1/2
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Non-mixing of (o);
Counterexample (Neumann, 2011, Bernoulli):

pXelXe1 X2 — Poi(a,),  op = Xe—1/2 + g(0¢-1),

where
e g:[0,00) — [0, 00) strictly monotone
e 0<g(o)<1/2

Then 20't = Xt—l + 2g(0'1_-_1) ~ L2atj = Xt_]_
N—_——

€(0,1)
~ 2g(0-t71) = 20‘1— — Xt—l = 20'1_- — L20'1_-J

Neumann (Jena) Log-linear count series February 12-14, 2024

14/18



Non-mixing of (o);

Counterexample (Neumann, 2011, Bernoulli):

pXelXe-1 Xe—z,e. — Poi(ot), or=Xi—1/2+ g(ot-1),

where
e g:[0,00) — [0, 00) strictly monotone
e 0<g(o)<1/2

Then 20't = Xt—l + 2g(0'1_-_1) ~ LzUtJ = Xt_]_
N—_——

€(0,1)
~ 2g(0—t71) = 20‘1— — Xt—l = 20'1_- — L20’tJ

@ g strictly monotone ~»  we can recover g;_;1 from o}
~>  we can recover from o; the complete past, (0s)s<t

@ (o¢): is not purely non-random
~»  not strong (a-) mixing ~»  not S-mixing
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Upper bounds to the mixing coefficients

o (X:): integer-valued process on (9, F, P), possibly nonstationary
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Upper bounds to the mixing coefficients

o (X:): integer-valued process on (9, F, P), possibly nonstationary
° )~(~:~()~§€)t and X’ = ()~(t’)t~two versions of (X;)¢, defined on
(Q,F, P), where (X, ..., Xk) and (X}, ..., X]) independent
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Upper bounds to the mixing coefficients

o (X:): integer-valued process on (9, F, P), possibly nonstationary

X~ (Xt)t and X' = (X!); ‘two versions of (X;)t, defined on
(Q, F, P), where (X, ..., X)) and (X3, - -, X]) independent
@ Then

B (k,n)
< E|: sup {‘P((Xk+n>Xk+n+1a--~)e C|Xo,...,)?k)
Ceo(C)
~ PR Kimias - ) € C 1 X, XD Y]
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Upper bounds to the mixing coefficients

o (X:): integer-valued process on (9, F, P), possibly nonstationary

X~ (Xt)t and X' = (X!); ‘two versions of (X;)t, defined on
(Q, F, P), where (X, ..., X)) and (X3, - -, X]) independent
@ Then

BX(k,n)
< E[CZL;;()C) {1P((Kicsm Xecrns,---) € C | Koy, Xe)
— P((Xfym Xbsmsts-- ) € C | 25,...,%;)|}]
< P <)~<k+n+, + )~(,1+n+, for some r € No)
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Upper bounds to the mixing coefficients

o (X:): integer-valued process on (9, F, P), possibly nonstationary

X~ (Xt)t and X' = (X!); ‘two versions of (X;)t, defined on
(Q, F, P), where (X, ..., X)) and (X3, - -, X]) independent
@ Then

5% (k. n)

< E|: sup {‘P((Xk+n>Xk+n+1a--~)e C|Xo,...,)?k)
Ceo(C)

~ PR Kimias - ) € C 1 X, XD Y]
< P <)~<k+n+, + )~(,1+n+, for some r € No)
= ﬁ (;kJrn 74‘ XliJrn)

by v/ v v/ v v/
+ Z P (XkJrnJrr # Xk+n+r7 Xk+n+r71 = Xk+n+r717 o 7Xk+n - Xk+,—,) .
r=1

Neumann (Jena) Log-linear count series February 12-14, 2024 15/18



Mixing of “Scale-invariant” INGARCH

X | “past” g oY |, (3.1a)
In(or) = In(f(oe1,Xe=1)) + In(Ze-1) (3.1b)
=:C1
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Mixing of “Scale-invariant” INGARCH

X | “past” g oY |, (3.1a)
In(or) = In(f(oe1,Xe=1)) + In(Ze-1) (3.1b)
=:C1

Contractive condition:

|In (f(x,0))=In (f(x',0"))| < al|In(a)—In(c")| + b|In(x+1)—In(x"+1)|.
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Mixing of “Scale-invariant” INGARCH

X | “past” g oY |, 3.1a)
In(ot) = In (f(O't_]_,Xt_]_)) + In(Zt_]_) (31b)
C
=it

Contractive condition:

|In (f(x,0))=In (f(x',0"))| < al|In(a)—In(c")| + b|In(x+1)—In(x"+1)|.

Theorem 3.1 (Leucht & N., 2023+).
If a4+ ~b <1, sup{E|C; — EC¢|: t € No} < 00, and E|In(og)| < oo, then
B(n) = O(p")

for some p < 1.

™ = - = = ye:
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Proof of Theorem 3.1

For t > k, couple )~(t and )~({ such that

"5(;@ # X/ | 0¢,0p) = drv(PLany,PlgiyJ)
— 0(|In(3¢) — In(@)]
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Proof of Theorem 3.1

For t > k, couple )?t and )~({ such that

ﬁ(;(t e )NQ' | ﬁt,E;) = dTV(pL&H) PL&;YJ)
— 0(|In(3¢) — In(@)]

Then
5% (k, n)
S ﬁ ()?k+n 7é )?Ii+n>

< c(a+vyb)"

(o)
p(¥x v % _ ¥ v _
+ E P (Xk+n+r # Xk+n+n Xictnir—1 = Xk+n+r—1a ooy Xign = Xk+n) :
r=1

< c(atyb)rar
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Summary

@ GARCH and INGARCH have a similar structure — nevertheless,
mixing results are qualitatively different and require different
techniques of proof
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mixing results are qualitatively different and require different
techniques of proof

@ INGARCH: proof of mixing via coupling rather than existing MC
results
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Summary

@ GARCH and INGARCH have a similar structure — nevertheless,
mixing results are qualitatively different and require different
techniques of proof

@ INGARCH: proof of mixing via coupling rather than existing MC
results

@ Poisson-INGARCH: a moderate trend leaves mixing properties intact
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Summary

@ GARCH and INGARCH have a similar structure — nevertheless,
mixing results are qualitatively different and require different
techniques of proof

@ INGARCH: proof of mixing via coupling rather than existing MC
results

@ Poisson-INGARCH: a moderate trend leaves mixing properties intact

@ “scale-invariant” INGARCH:

» closer to classical GARCH
» contraction at a logarithmic scale ~»  explosive behavior does not
affect mixing properties
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