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Toruń, Poland



AIRM

Adam Jakubowski

Cooking
mathematics and
steaks

Phantom
distribution
functions

Markov chains

AIRM

Non-periodic drifts

2

Cooking mathematics and steaks
with the PI (2007–2024)
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IV Nagaev’s Lecture
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Chaire Internationale 2013-2014, Labex MME-DII
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A cook and a great companion
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Cooking steaks
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Enjoying friendship
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The talk

Phantom distributions for non-stationary
time series as an averaging operation

Joint work with Paul Doukhan
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Phantom distribution functions
• The notion of a phantom distribution function was introduced by

O’Brien, AoP(1987).
• Let {Xj} be a stationary sequence with partial maxima

Mn = max
1¬j¬n

Xj

and the marginal distribution function F (x) = P(X1 ¬ x).
• A stationary sequence {Xn} is said to admit a phantom

distribution function G if

sup
u∈R

∣∣∣P(Mn ¬ u)−Gn(u)
∣∣∣→ 0, as n→∞. (1)

• It is obvious that G is not uniquely determined for only the
behavior of G at its right end G∗ = sup{x ; G(x) < 1} is of
importance.
• When (1) is satisfied with G(x) = F θ(x), for some θ ∈ (0,1], then

we say that {Xj} has the extremal index θ in the sense of
Leadbetter, Z.Wahr(1983).
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Phantom distribution functions are quite common

• Doukhan, J. and Lang, Extr(2015) showed that phantom
distribution functions (in fact: continuous phantom distribution
functions) exist in a large class of stationary sequences, including
some non-ergodic ones.
• J., Mikosch, Rodionov and Soja-Kukieła (2022+) exhibited

examples of stationary sequences with continuous phantom
distribution functions but without the extremal index.
• J., Rodionov and Soja-Kukieła, Bern(2021) extended the notion

of a phantom distribution function to stationary random fields,
where interesting phenomena occur.
• In all examples given above we deal with stationarity, that seems

to be a natural environment for the notion of a phantom
distribution function
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Phantom distribution function in the Metropolis algorithm
• Let {Zj} is an i.i.d. sequence with the marginal distribution

function H given by the proposal density h, symmetric about 0.
• Let {Uj} be an i.i.d. sequence distributed uniformly on [0,1],

independent of {Zj}.
• Let f (x) be the target probability density.
• We consider the random walk Metropolis algorithm given by the

recursive equation

Xj+1 = Xj + Zj+11I{Uj+1¬ψ(Xj ,Xj+Zj+1)},

where ψ(x , y) is defined as

ψ(x , y) =

min
{
f (y)/f (x),1

}
if f (x) > 0,

1 if f (x) = 0.

• If f is heavy-tailed, then the extremal index is zero.
• Various versions of f and h can model various rates of increase

of maxima.
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What if Markov chain starts at a point? (J. and Truszczyński,
SPL(2018))
• Let {Yn} be a positive Harris and aperiodic chain taking values in(

S,S) and with a stationary distribution π.

• Let f : (S,S
)
→
(
R1,B1

)
be measurable. Define Xn = f (Yn).

• If {Xn} admits a continuous phantom distribution function G
under some initial distribution λ, i.e. if we have

sup
x∈R1

∣∣∣∣Pλ(Mn ¬ x
)
−Gn(x)

∣∣∣∣→ 0, as n→∞, (∗)

then G is also a continuous phantom distribution function for the
stationary (under π) sequence {Xn}.
• Conversely, if {Xn} admits a continuous phantom distribution

function G under π, then there exists a set S0 ∈ S satisfying
π
(
S0

)
= 0 and such that relation (∗) holds for every initial

distribution λ with the property that λ(S0) = 0
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Hüsler’s example and periodic non-stationarity

• Let Y1,Y2, . . . be i.i.d. and have the exponential distribution with
parameter λ Fλ. Choose α > 0 and set

X1 = Y1,X2 = Y2 + α,X3 = Y3,X4 = Y4 + α, . . . .

• Hüsler in JApplProb(1986) observed that

P(Mn ¬ log n + x)→ exp(− exp(−x + α)/2).

• Hüsler used this fact to illustrate the formalism developed in his
paper.
• We can simply say that {Xn} admits a phantom distribution

function
G(x) =

(
Fλ(x)Fλ(x − α)

)1/2
.

• Notice the geometric averaging in the above formula.
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Hüsler’s example and periodic non-stationarity
• In fact, when formulated in terms of phantom distribution

functions, Hüsler’s example is valid for any distribution function F
such that F n(vn)→ γ1, F n(vn − α)→ γ2, 0 < γ1, γ2 < 1, for some
sequence of levels vn.
• Let us consider an important extension. Let {αk} be a periodic

sequence of numbers (i.e. αk+m·p = αk for all k ,m ∈ N and some
p ∈ N).
• Let {Yj} be i.i.d. with distribution function F satisfying regularity

conditions F n(vn − αk)→ γk , 0 < γ1, γ2, . . . , γp < 1.
• If we set Xk = Yk + αk , then

G(x) =
(
F (x − α1)F (x − α2) . . .F (x − αp)

)1/p

is a phantom distribution function for {Xn}.
• Averaging! Also: undefinable extremal index.
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Asymptotic Independent Representation for Maxima

• Let {Xk}k∈N be a sequence of random variables. Define
Mn = max0<k¬n Xk .

• Suppose one can find a sequence {X̃k}k∈N of independent
random variables such that

sup
x∈R1
|P(Mn ¬ x)− P(M̃n ¬ x)| → 0 as n→∞,

where M̃n is the n-th partial maximum of {X̃k}.
• We will say that {Xk}k∈N admits an asymptotic independent

representation for maxima (AIRM) {X̃k}k∈N.
• Clearly, if {X̃k} are identically distributed, then their common

distribution function G is a phantom distribution function for
{Xk}k∈N.
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The tool (Theorem 2, J., AoP(1993))
• Assume there is a non-decreasing sequence {vn} such that

P(M[nt] ¬ vn)−→ exp(−βt), as n→∞, t ­ 0,

where the function βt is continuous on [0,∞), β0 = 0,
limt→∞ βt = +∞.
• If the function βt is of the form

βt = h(log t),

where h : (−∞,+∞)→ [0,+∞) is convex, then {Xn} admits an
AIRM {X̃n}.
• {X̃n} can be defined via its marginals

X̃k ∼ Fk(x) =


0, if x < v1;

exp
(
β(k−1)/n − βk/n

)
, if vn ¬ x < vn+1;

1, if x ­ supn vn.
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Some comments on the main tool
• If h(x) = B exp(x), then βt = h(log t) = B · t and for each k

Fk(x) = exp
(
β(k−1)/n − βk/n

)
= exp(−B)1/n, if vn ¬ x < vn+1,

i.e. Fk does not depend on k .
• In other words, if

P(M[nt] ¬ vn)−→ exp(−B · t), as n→∞, t ­ 0,

then {Xn} admits a phantom distribution function, independently
of being stationary or non-stationary.
• If the function βt is discontinuous, it may be uninformative. Let

F (x) =
{

1− x−β for x ­ 1
0 otherwise

If {Yk} are i.i.d. with L(Yk) ∼ F , define Xk = k−1/βYk and
vn = log1/β n. Then for every t > 0,

P(M[nt] ¬ vn) −→ e−1.
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Non-periodic drifts
• Let Y1,Y2, . . . be i.i.d. and have the Gumbel distribution:

F (x) = exp(− exp(−x)). Let αk be any numbers. Set
X1 = Y1 + α1,X2 = Y2 + α2, . . ..
• We have

P(Xk ¬ x) = P(Yk + αk ¬ x) = F (x − αk) =
(
F (x)

)eαk

.

• Therefore

P(M[nt] ¬ vn) =
(
F (vn)

n
)(1/n)

∑[nt]
k=1 eαk

→ exp(−B · t),

if F (vn)
n → e−1 and

1
n

[nt]∑
k=1

eαk → B · t , t > 0.

• Distributions of X1,X2, . . . form so-called Fα-scheme, studied by
Young, Weissmann, Nevzorov, Doukhan, ...
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Other possible representations
• If {Xn} are independent, and for some continuous βt

P(M[nt] ¬ vn)−→ exp(−βt), as n→∞, t ­ 0,

then necessarily βt = h(log t) for some convex h.
• Are there any other interesting functions βt?
• Surely: set h(x) = B exp(C · x), B,C > 0. Then
βt = h(log t) = BtC.
• Returning to the previous Fα-scheme we have

P(M[nt] ¬ vn) =
(
F (vn)

nC
)(1/nC)

∑[nt]
k=1 eαk

→ exp(−B · tC),

if F (vn)
nC → e−1 and

1
nC

[nt]∑
k=1

eαk → B · tC , t > 0.
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