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Data: n observations X1, . . . ,Xn of a stationary binary Markov chain of order d.

Transition probabilities: p(x) = P(Xt = 1|Xt−d :t−1 = x) for x ∈ {0, 1}d .

Classical question: how to estimate the transition probabilities p(x) given the data?

The MLE of p(x) computed from the data is given by

p̂n(x) = Nn(x , 1)
Nn(x , 0) + Nn(x , 1) = Nn(x , 1)

N̄n(x)
,

where Nn(x , b) = |{d + 1 ≤ t ≤ n : Xt−d :t−1 = x ,Xt = b}|.

Focus on the high-dimensional setting: d = dn and p(x) = pn(x).
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In this full generality, p(x) can be estimated only if d ≤ C log2 n.

There are two related ways to convince of this:

1. The number of free parameters DimMC (d) = 2d grows exponentially with d.

2. For p̂n(x) to have any meaning, we need that N̄n(x) ≥ 1. By ergodicity,

N̄n(x) ≈ nP(X1:d = x).

If the transition probabilities are bounded below from zero, then ∃ c > 0 such that

P(X1:d = x) < e−cd .

Hence, we need 1 ≤ ne−cd implying that d ≤ C log2 n. Need to seek for sparse Markov
chains!
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Two examples of sparse {0, 1}-valued Markov chains

Minimal Markov Models (MMM) are Markov chains of order d such that there exist a
partition C1, . . . , CK of {0, 1}d with the property that

p(x) = p(y) if and only if x , y ∈ Ci .

The dimension of a MMM is DimMMM(d) = K . Sparse when K � 2d .

Variable length Markov chains (VLMC) are MMM for which the partition C1, . . . , CK is
“given by a irreducible tree”.

Without further hypothesis, p(x) can be estimated still only if d ≤ C log2 n (by the
point 2 above.)
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What if d � C log2 n?

Why this regime is important? Many natural phenomena have very long memory!

In this talk: we suppose d = βn with β ∈ (0, 1) and focus on another class of sparse
Markov chains, called Mixture Transition Distribution (MTD) models.

MTD models have been introduced by A. Raftery (’85). For applications see A.
Berchtold & Raftery (’02).
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MTD models

Markov chains of order d such that

p(x) = λ0p0 +
−1∑

j=−d
λjpj(xj)

where: x = (x−d , . . . , x−1) and
I 0 ≤ p0, pj(a) ≤ 1 for all j ∈ {−d , . . . ,−1} and a ∈ {0, 1}.
I λ0, λ1, . . . , λ−d ∈ [0, 1] such that

∑0
j=−d λj = 1.

For each lag j ∈ {−d , . . . ,−1}, let δj = λj |pj(1)− pj(0)|.

Denote Λ = {j ∈ {−d , . . . ,−1} : δj > 0} (set of relevant lags).

Note that p(x) = p(xΛ) and DimMTD(d) = 3|Λ|+ 1.
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Idea to estimate p(x) for MTD

First, estimate Λ from the data. Denote Λ̂n an estimator of Λ.

Then, compute p̂n(xΛ̂n
).

Statistical lag selection: how to estimate efficiently Λ from the data?

Remark: the behavior of minj∈Λ δ
2
j measures how difficult is to estimate Λ.

Indeed, lag selection is possible (in the minimax sense) only if

min
j∈Λ

δ2
j ≥ C log(n)

n .
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Goal of this talk:

I to present an efficient estimator of the set of relevant lags Λ, based on a sample
X1:n of a MTD model with order d .

I to provide some theoretical guarantees in the high-dimensional regime Λ = Λn and
d = dn = βn for some β ∈ (0, 1).

To estimate Λ, we propose to use the Forward Stepwise and Cut (FSC) estimator.

For a sample X1:n, integer m < n, S ⊆ {−d , . . . ,−1} and xS ∈ {0, 1}S , let

p̂m,n(xS) =


Nm,n(xS ,1)
N̄m,n(xS ) , if N̄m,n(xS) > 0,

1/2, otherwise
,

In the definition of p̂m,n(xS) the countings are over Xm+1:n.
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FSC estimator

The FSC estimator is defined as follows.

Step 1 (FS). From X1:m, build a random set Ŝm such that Λ ⊆ Ŝm with high probability.

Step 2 (CUT). For each j ∈ Ŝm, remove j from Ŝm only if

|p̂m,n(xŜm
)− p̂m,n(yŜm

)| < tm,n(xŜm
, yŜm

),

for all xŜm
, yŜm

∈ AŜm s.t. xk = yk for all k ∈ Ŝm \ {j}.

Output Λ̂n = All lags not removed in the CUT step.
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Choice of the random threshold

For S ⊆ {−d , . . . ,−1}, xS ∈ {0, 1}S , we take tm,n(xS , yS) = sm,n(xS) + sm,n(yS),
where

sm,n(xS) =
√

2α(1 + ε)Vm,n(xS)
N̄m,n(xS)

+ 2α
3N̄m,n(xS)

,

with α, ε > 0, µ ∈ (0, 3) s.t. µ > ψ(µ) = eµ − 1− µ and

Vm,n(xS) = µ

µ− ψ(µ) p̂m,n(xS) + α

N̄m,n(xS)(µ− ψ(µ))
.

The choice of sm,n(xS) is based on a Martingale concentration inequality.
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How do we build Ŝm?

For S ⊆ {−d , . . . ,−1} and j /∈ S, let ν̄j,S = E [|CovXS (X0,Xj)|] .

Notice that maxj∈Sc ν̄j,S = 0 if Λ ⊆ S.

Assumption 1. P(XS = xS) > 0 for all S ⊆ {−d , . . . ,−1} and xS ∈ {0, 1}S .

Proposition 1. Under Assumption 1 there exists κ > 0 such that the following
property holds: for all S ⊆ {−d , . . . ,−1} with Λ 6⊆ S, it holds that

max
j∈Sc

ν̄j,S ≥ max
j∈Λ\S

ν̄j,S ≥ κ
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Denote ν̂m,j,S the empirical estimate of ν̄j,S computed from X1:m.

To build Ŝm, we do as follows. Fix 0 ≤ ` ≤ d .
1. Set Ŝm = ∅.
2. While |Ŝm| < `, compute j ∈ arg maxk∈Ŝc

m
ν̂m,k,Ŝm

and include j in Ŝm.
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Theoretical guarantees of FSC estimator.
Theorem. Take m = n/2 and assume d = βm for β ∈ (0, 1) and suppose λ0 > 0,
0 < p0 < 1 and that the following conditions hold:

I ∃ Γ1 ∈ (0, 1] s.t. for all S ⊂ {−d , . . . ,−1} such that Λ 6⊆ S and k ∈ Λ \ S,

max
xS∈{0,1}S

∑
j∈Λ\S∪{k}

δj
δk
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Simulations: FSC estimator



Simulations: transition probability estimation
MTD model used: p(x) = λ0p0 + λipi (xi ) + λjpj(xj) where λ0 = 0.2, p0 = 0.5,
λi = λj = 0.4, 1− pi (0) = pi (1) = 1− pj(0) = pj(1) = 0.7.

For each choice of i , j , d , and n we simulated 100 realizations. For each realization, we
estimated the transition probability p(0|0d ).



Simulations: FSC without CUT



Final comments

We could estimate Λ by

Λ̂BIC = arg min
S∈P({−d ,...,−1})

{
− log MLS(X1, . . . ,Xn) + (3|Λ|+ 1)

2 log(n)
}
.

Can we compute Λ̂BIC efficiently? The models are not nested!

What about multivariate MTD models?
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