Sparse Markov Models for High-Dimensional Inference

Guilherme Ost
Federal University of Rio de Janeiro
CYU ECODEP

Jun, 2022

Joint work with

D.Y. Takahashi
(Brain Institute/UFRN)

Data: n observations X_{1}, \ldots, X_{n} of a stationary binary Markov chain of order d .

Data: n observations X_{1}, \ldots, X_{n} of a stationary binary Markov chain of order d.
Transition probabilities: $p(x)=\mathbb{P}\left(X_{t}=1 \mid X_{t-d: t-1}=x\right)$ for $x \in\{0,1\}^{d}$.

Data: n observations X_{1}, \ldots, X_{n} of a stationary binary Markov chain of order d.
Transition probabilities: $p(x)=\mathbb{P}\left(X_{t}=1 \mid X_{t-d: t-1}=x\right)$ for $x \in\{0,1\}^{d}$.
Classical question: how to estimate the transition probabilities $p(x)$ given the data?

Data: n observations X_{1}, \ldots, X_{n} of a stationary binary Markov chain of order d.
Transition probabilities: $p(x)=\mathbb{P}\left(X_{t}=1 \mid X_{t-d: t-1}=x\right)$ for $x \in\{0,1\}^{d}$.
Classical question: how to estimate the transition probabilities $p(x)$ given the data?
The MLE of $p(x)$ computed from the data is given by

$$
\hat{p}_{n}(x)=\frac{N_{n}(x, 1)}{N_{n}(x, 0)+N_{n}(x, 1)}=\frac{N_{n}(x, 1)}{\bar{N}_{n}(x)},
$$

where $N_{n}(x, b)=\left|\left\{d+1 \leq t \leq n: X_{t-d: t-1}=x, X_{t}=b\right\}\right|$.

Data: n observations X_{1}, \ldots, X_{n} of a stationary binary Markov chain of order d.
Transition probabilities: $p(x)=\mathbb{P}\left(X_{t}=1 \mid X_{t-d: t-1}=x\right)$ for $x \in\{0,1\}^{d}$.
Classical question: how to estimate the transition probabilities $p(x)$ given the data?
The MLE of $p(x)$ computed from the data is given by

$$
\hat{p}_{n}(x)=\frac{N_{n}(x, 1)}{N_{n}(x, 0)+N_{n}(x, 1)}=\frac{N_{n}(x, 1)}{\bar{N}_{n}(x)},
$$

where $N_{n}(x, b)=\left|\left\{d+1 \leq t \leq n: X_{t-d: t-1}=x, X_{t}=b\right\}\right|$.
Focus on the high-dimensional setting: $d=d_{n}$ and $p(x)=p_{n}(x)$.

In this full generality, $p(x)$ can be estimated only if $d \leq C \log _{2} n$.

In this full generality, $p(x)$ can be estimated only if $d \leq C \log _{2} n$.
There are two related ways to convince of this:

1. The number of free parameters $\operatorname{Dim}_{M C}(d)=2^{d}$ grows exponentially with d.

In this full generality, $p(x)$ can be estimated only if $d \leq C \log _{2} n$.
There are two related ways to convince of this:

1. The number of free parameters $\operatorname{Dim}_{M C}(d)=2^{d}$ grows exponentially with d.
2. For $\hat{p}_{n}(x)$ to have any meaning, we need that $\bar{N}_{n}(x) \geq 1$.

In this full generality, $p(x)$ can be estimated only if $d \leq C \log _{2} n$.
There are two related ways to convince of this:

1. The number of free parameters $\operatorname{Dim}_{M C}(d)=2^{d}$ grows exponentially with d.
2. For $\hat{p}_{n}(x)$ to have any meaning, we need that $\bar{N}_{n}(x) \geq 1$. By ergodicity,

$$
\bar{N}_{n}(x) \approx n \mathbb{P}\left(X_{1: d}=x\right)
$$

In this full generality, $p(x)$ can be estimated only if $d \leq C \log _{2} n$.
There are two related ways to convince of this:

1. The number of free parameters $\operatorname{Dim}_{M C}(d)=2^{d}$ grows exponentially with d.
2. For $\hat{p}_{n}(x)$ to have any meaning, we need that $\bar{N}_{n}(x) \geq 1$. By ergodicity,

$$
\bar{N}_{n}(x) \approx n \mathbb{P}\left(X_{1: d}=x\right)
$$

If the transition probabilities are bounded below from zero, then $\exists c>0$ such that

$$
\mathbb{P}\left(X_{1: d}=x\right)<e^{-c d}
$$

In this full generality, $p(x)$ can be estimated only if $d \leq C \log _{2} n$.
There are two related ways to convince of this:

1. The number of free parameters $\operatorname{Dim}_{M C}(d)=2^{d}$ grows exponentially with d.
2. For $\hat{p}_{n}(x)$ to have any meaning, we need that $\bar{N}_{n}(x) \geq 1$. By ergodicity,

$$
\bar{N}_{n}(x) \approx n \mathbb{P}\left(X_{1: d}=x\right)
$$

If the transition probabilities are bounded below from zero, then $\exists c>0$ such that

$$
\mathbb{P}\left(X_{1: d}=x\right)<e^{-c d}
$$

Hence, we need $1 \leq n e^{-c d}$ implying that $d \leq C \log _{2} n$.

In this full generality, $p(x)$ can be estimated only if $d \leq C \log _{2} n$.
There are two related ways to convince of this:

1. The number of free parameters $\operatorname{Dim}_{M C}(d)=2^{d}$ grows exponentially with d.
2. For $\hat{p}_{n}(x)$ to have any meaning, we need that $\bar{N}_{n}(x) \geq 1$. By ergodicity,

$$
\bar{N}_{n}(x) \approx n \mathbb{P}\left(X_{1: d}=x\right)
$$

If the transition probabilities are bounded below from zero, then $\exists c>0$ such that

$$
\mathbb{P}\left(X_{1: d}=x\right)<e^{-c d}
$$

Hence, we need $1 \leq n e^{-c d}$ implying that $d \leq C \log _{2} n$. Need to seek for sparse Markov chains!

Two examples of sparse $\{0,1\}$-valued Markov chains

Minimal Markov Models (MMM) are Markov chains of order d such that there exist a partition $\mathcal{C}_{1}, \ldots, \mathcal{C}_{K}$ of $\{0,1\}^{d}$ with the property that

$$
p(x)=p(y) \text { if and only if } x, y \in \mathcal{C}_{i} .
$$

Two examples of sparse $\{0,1\}$-valued Markov chains

Minimal Markov Models (MMM) are Markov chains of order d such that there exist a partition $\mathcal{C}_{1}, \ldots, \mathcal{C}_{K}$ of $\{0,1\}^{d}$ with the property that

$$
p(x)=p(y) \text { if and only if } x, y \in \mathcal{C}_{i} .
$$

The dimension of a MMM is $\operatorname{Dim}_{M M M}(d)=K$. Sparse when $K \ll 2^{d}$.

Two examples of sparse $\{0,1\}$-valued Markov chains

Minimal Markov Models (MMM) are Markov chains of order d such that there exist a partition $\mathcal{C}_{1}, \ldots, \mathcal{C}_{K}$ of $\{0,1\}^{d}$ with the property that

$$
p(x)=p(y) \text { if and only if } x, y \in \mathcal{C}_{i} .
$$

The dimension of a MMM is $\operatorname{Dim}_{M M M}(d)=K$. Sparse when $K \ll 2^{d}$.
Variable length Markov chains (VLMC) are MMM for which the partition $\mathcal{C}_{1}, \ldots, \mathcal{C}_{K}$ is "given by a irreducible tree".

Two examples of sparse $\{0,1\}$-valued Markov chains

Minimal Markov Models (MMM) are Markov chains of order d such that there exist a partition $\mathcal{C}_{1}, \ldots, \mathcal{C}_{K}$ of $\{0,1\}^{d}$ with the property that

$$
p(x)=p(y) \text { if and only if } x, y \in \mathcal{C}_{i} .
$$

The dimension of a MMM is $\operatorname{Dim}_{M M M}(d)=K$. Sparse when $K \ll 2^{d}$.
Variable length Markov chains (VLMC) are MMM for which the partition $\mathcal{C}_{1}, \ldots, \mathcal{C}_{K}$ is "given by a irreducible tree".

Without further hypothesis, $p(x)$ can be estimated still only if $d \leq C \log _{2} n$ (by the point 2 above.)

$$
\text { What if } d \gg C \log _{2} n ?
$$

What if $d \gg C \log _{2} n$?
Why this regime is important? Many natural phenomena have very long memory!

What if $d \gg C \log _{2} n$?
Why this regime is important? Many natural phenomena have very long memory!
In this talk: we suppose $d=\beta n$ with $\beta \in(0,1)$ and focus on another class of sparse Markov chains, called Mixture Transition Distribution (MTD) models.

MTD models have been introduced by A. Raftery ('85). For applications see A. Berchtold \& Raftery ('02).

MTD models

Markov chains of order d such that

$$
p(x)=\lambda_{0} p_{0}+\sum_{j=-d}^{-1} \lambda_{j} p_{j}\left(x_{j}\right)
$$

where: $x=\left(x_{-d}, \ldots, x_{-1}\right)$ and

- $0 \leq p_{0}, p_{j}(a) \leq 1$ for all $j \in\{-d, \ldots,-1\}$ and $a \in\{0,1\}$.
- $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{-d} \in[0,1]$ such that $\sum_{j=-d}^{0} \lambda_{j}=1$.

MTD models

Markov chains of order d such that

$$
p(x)=\lambda_{0} p_{0}+\sum_{j=-d}^{-1} \lambda_{j} p_{j}\left(x_{j}\right)
$$

where: $x=\left(x_{-d}, \ldots, x_{-1}\right)$ and

- $0 \leq p_{0}, p_{j}(a) \leq 1$ for all $j \in\{-d, \ldots,-1\}$ and $a \in\{0,1\}$.
- $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{-d} \in[0,1]$ such that $\sum_{j=-d}^{0} \lambda_{j}=1$.

For each $\operatorname{lag} j \in\{-d, \ldots,-1\}$, let $\delta_{j}=\lambda_{j}\left|p_{j}(1)-p_{j}(0)\right|$.

MTD models

Markov chains of order d such that

$$
p(x)=\lambda_{0} p_{0}+\sum_{j=-d}^{-1} \lambda_{j} p_{j}\left(x_{j}\right)
$$

where: $x=\left(x_{-d}, \ldots, x_{-1}\right)$ and

- $0 \leq p_{0}, p_{j}(a) \leq 1$ for all $j \in\{-d, \ldots,-1\}$ and $a \in\{0,1\}$.
- $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{-d} \in[0,1]$ such that $\sum_{j=-d}^{0} \lambda_{j}=1$.

For each $\operatorname{lag} j \in\{-d, \ldots,-1\}$, let $\delta_{j}=\lambda_{j}\left|p_{j}(1)-p_{j}(0)\right|$.
Denote $\Lambda=\left\{j \in\{-d, \ldots,-1\}: \delta_{j}>0\right\}$ (set of relevant lags).

MTD models

Markov chains of order d such that

$$
p(x)=\lambda_{0} p_{0}+\sum_{j=-d}^{-1} \lambda_{j} p_{j}\left(x_{j}\right)
$$

where: $x=\left(x_{-d}, \ldots, x_{-1}\right)$ and

- $0 \leq p_{0}, p_{j}(a) \leq 1$ for all $j \in\{-d, \ldots,-1\}$ and $a \in\{0,1\}$.
- $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{-d} \in[0,1]$ such that $\sum_{j=-d}^{0} \lambda_{j}=1$.

For each lag $j \in\{-d, \ldots,-1\}$, let $\delta_{j}=\lambda_{j}\left|p_{j}(1)-p_{j}(0)\right|$.
Denote $\Lambda=\left\{j \in\{-d, \ldots,-1\}: \delta_{j}>0\right\}$ (set of relevant lags).
Note that $p(x)=p\left(x_{\Lambda}\right)$ and $\operatorname{Dim}_{M T D}(d)=3|\Lambda|+1$.

Idea to estimate $p(x)$ for MTD

First, estimate Λ from the data. Denote $\hat{\Lambda}_{n}$ an estimator of Λ.

Idea to estimate $p(x)$ for MTD

First, estimate Λ from the data. Denote $\hat{\Lambda}_{n}$ an estimator of Λ.
Then, compute $\hat{p}_{n}\left(x_{\hat{\lambda}_{n}}\right)$.

Idea to estimate $p(x)$ for MTD

First, estimate Λ from the data. Denote $\hat{\Lambda}_{n}$ an estimator of Λ.
Then, compute $\hat{p}_{n}\left(x_{\hat{\lambda}_{n}}\right)$.
Statistical lag selection: how to estimate efficiently \wedge from the data?

Idea to estimate $p(x)$ for MTD

First, estimate Λ from the data. Denote $\hat{\Lambda}_{n}$ an estimator of Λ.
Then, compute $\hat{p}_{n}\left(x_{\hat{\lambda}_{n}}\right)$.
Statistical lag selection: how to estimate efficiently \wedge from the data?
Remark: the behavior of $\min _{j \in \Lambda} \delta_{j}^{2}$ measures how difficult is to estimate Λ.

Idea to estimate $p(x)$ for MTD

First, estimate Λ from the data. Denote $\hat{\Lambda}_{n}$ an estimator of Λ.
Then, compute $\hat{p}_{n}\left(x_{\hat{\Lambda}_{n}}\right)$.
Statistical lag selection: how to estimate efficiently \wedge from the data?
Remark: the behavior of $\min _{j \in \Lambda} \delta_{j}^{2}$ measures how difficult is to estimate Λ.
Indeed, lag selection is possible (in the minimax sense) only if

$$
\min _{j \in \Lambda} \delta_{j}^{2} \geq C \frac{\log (n)}{n}
$$

Goal of this talk:

- to present an efficient estimator of the set of relevant lags Λ, based on a sample $X_{1: n}$ of a MTD model with order d.
- to provide some theoretical guarantees in the high-dimensional regime $\Lambda=\Lambda_{n}$ and $d=d_{n}=\beta n$ for some $\beta \in(0,1)$.

Goal of this talk:

- to present an efficient estimator of the set of relevant lags Λ, based on a sample $X_{1: n}$ of a MTD model with order d.
- to provide some theoretical guarantees in the high-dimensional regime $\Lambda=\Lambda_{n}$ and $d=d_{n}=\beta n$ for some $\beta \in(0,1)$.

To estimate Λ, we propose to use the Forward Stepwise and Cut (FSC) estimator.

Goal of this talk:

- to present an efficient estimator of the set of relevant lags Λ, based on a sample $X_{1: n}$ of a MTD model with order d.
- to provide some theoretical guarantees in the high-dimensional regime $\Lambda=\Lambda_{n}$ and $d=d_{n}=\beta n$ for some $\beta \in(0,1)$.

To estimate Λ, we propose to use the Forward Stepwise and Cut (FSC) estimator.
For a sample $X_{1: n}$, integer $m<n, S \subseteq\{-d, \ldots,-1\}$ and $x_{S} \in\{0,1\}^{S}$, let

$$
\hat{p}_{m, n}\left(x_{S}\right)=\left\{\begin{array}{l}
\frac{N_{m, n}\left(x_{S}, 1\right)}{\bar{N}_{m, n}\left(x_{S}\right)}, \text { if } \bar{N}_{m, n}\left(x_{S}\right)>0 \\
1 / 2, \text { otherwise }
\end{array}\right.
$$

In the definition of $\hat{p}_{m, n}\left(x_{S}\right)$ the countings are over $X_{m+1: n}$.

FSC estimator

The FSC estimator is defined as follows.

Step 1 (FS). From $X_{1: m}$, build a random set \hat{S}_{m} such that $\Lambda \subseteq \hat{S}_{m}$ with high probability.

FSC estimator

The FSC estimator is defined as follows.

Step 1 (FS). From $X_{1: m}$, build a random set \hat{S}_{m} such that $\Lambda \subseteq \hat{S}_{m}$ with high probability.
Step 2 (CUT). For each $j \in \hat{S}_{m}$, remove j from \hat{S}_{m} only if

$$
\left|\hat{p}_{m, n}\left(x_{\hat{S}_{m}}\right)-\hat{p}_{m, n}\left(y_{\hat{S}_{m}}\right)\right|<t_{m, n}\left(x_{\hat{S}_{m}}, y_{\hat{S}_{m}}\right)
$$

for all $x_{\hat{S}_{m}}, y_{\hat{S}_{m}} \in A^{\hat{S}_{m}}$ s.t. $x_{k}=y_{k}$ for all $k \in \hat{S}_{m} \backslash\{j\}$.

FSC estimator

The FSC estimator is defined as follows.

Step 1 (FS). From $X_{1: m}$, build a random set \hat{S}_{m} such that $\Lambda \subseteq \hat{S}_{m}$ with high probability.
Step 2 (CUT). For each $j \in \hat{S}_{m}$, remove j from \hat{S}_{m} only if

$$
\left|\hat{p}_{m, n}\left(x_{\hat{S}_{m}}\right)-\hat{p}_{m, n}\left(y_{\hat{S}_{m}}\right)\right|<t_{m, n}\left(x_{\hat{S}_{m}}, y_{\hat{S}_{m}}\right)
$$

for all $x_{\hat{S}_{m}}, y_{\hat{S}_{m}} \in A^{\hat{S}_{m}}$ s.t. $x_{k}=y_{k}$ for all $k \in \hat{S}_{m} \backslash\{j\}$.
Output $\hat{\Lambda}_{n}=$ All lags not removed in the CUT step.

Choice of the random threshold

For $S \subseteq\{-d, \ldots,-1\}, x_{S} \in\{0,1\}^{S}$, we take $t_{m, n}\left(x_{S}, y_{S}\right)=s_{m, n}\left(x_{S}\right)+s_{m, n}\left(y_{S}\right)$, where

$$
s_{m, n}\left(x_{S}\right)=\sqrt{\frac{2 \alpha(1+\varepsilon) V_{m, n}\left(x_{S}\right)}{\bar{N}_{m, n}\left(x_{S}\right)}}+\frac{2 \alpha}{3 \bar{N}_{m, n}\left(x_{S}\right)}
$$

with $\alpha, \varepsilon>0, \mu \in(0,3)$ s.t. $\mu>\psi(\mu)=e^{\mu}-1-\mu$ and

$$
V_{m, n}\left(x_{S}\right)=\frac{\mu}{\mu-\psi(\mu)} \hat{p}_{m, n}\left(x_{S}\right)+\frac{\alpha}{\bar{N}_{m, n}\left(x_{S}\right)(\mu-\psi(\mu))} .
$$

Choice of the random threshold

For $S \subseteq\{-d, \ldots,-1\}, x_{S} \in\{0,1\}^{S}$, we take $t_{m, n}\left(x_{S}, y_{S}\right)=s_{m, n}\left(x_{S}\right)+s_{m, n}\left(y_{S}\right)$, where

$$
s_{m, n}\left(x_{S}\right)=\sqrt{\frac{2 \alpha(1+\varepsilon) V_{m, n}\left(x_{S}\right)}{\bar{N}_{m, n}\left(x_{S}\right)}}+\frac{2 \alpha}{3 \bar{N}_{m, n}\left(x_{S}\right)}
$$

with $\alpha, \varepsilon>0, \mu \in(0,3)$ s.t. $\mu>\psi(\mu)=e^{\mu}-1-\mu$ and

$$
V_{m, n}\left(x_{S}\right)=\frac{\mu}{\mu-\psi(\mu)} \hat{p}_{m, n}\left(x_{S}\right)+\frac{\alpha}{\bar{N}_{m, n}\left(x_{S}\right)(\mu-\psi(\mu))} .
$$

The choice of $s_{m, n}\left(x_{S}\right)$ is based on a Martingale concentration inequality.

How do we build \hat{S}_{m} ?

For $S \subseteq\{-d, \ldots,-1\}$ and $j \notin S$, let $\bar{\nu}_{j, S}=\mathbb{E}\left[\left|\operatorname{Cov}_{X_{S}}\left(X_{0}, X_{j}\right)\right|\right]$.

How do we build \hat{S}_{m} ?

For $S \subseteq\{-d, \ldots,-1\}$ and $j \notin S$, let $\bar{\nu}_{j, S}=\mathbb{E}\left[\left|\operatorname{Cov} \chi_{s}\left(X_{0}, X_{j}\right)\right|\right]$.
Notice that $\max _{j \in S c} \bar{\nu}_{j, S}=0$ if $\Lambda \subseteq S$.

How do we build \hat{S}_{m} ?

For $S \subseteq\{-d, \ldots,-1\}$ and $j \notin S$, let $\bar{\nu}_{j, S}=\mathbb{E}\left[\mid \operatorname{Cov} x_{s}\left(X_{0}, X_{j}\right)\right]$.
Notice that $\max _{j \in S c} \bar{\nu}_{j, S}=0$ if $\Lambda \subseteq S$.
Assumption 1. $\mathbb{P}\left(X_{S}=x_{S}\right)>0$ for all $S \subseteq\{-d, \ldots,-1\}$ and $x_{S} \in\{0,1\}^{S}$.

How do we build \hat{S}_{m} ?

For $S \subseteq\{-d, \ldots,-1\}$ and $j \notin S$, let $\bar{\nu}_{j, S}=\mathbb{E}\left[\left|\operatorname{Cov}_{X_{S}}\left(X_{0}, X_{j}\right)\right|\right]$.
Notice that $\max _{j \in S^{c}} \bar{\nu}_{j, S}=0$ if $\Lambda \subseteq S$.
Assumption 1. $\mathbb{P}\left(X_{S}=x_{S}\right)>0$ for all $S \subseteq\{-d, \ldots,-1\}$ and $x_{S} \in\{0,1\}^{S}$.
Proposition 1. Under Assumption 1 there exists $\kappa>0$ such that the following property holds: for all $S \subseteq\{-d, \ldots,-1\}$ with $\Lambda \nsubseteq S$, it holds that

$$
\max _{j \in S^{c}} \bar{\nu}_{j, S} \geq \max _{j \in \Lambda \backslash S} \bar{\nu}_{j, S} \geq \kappa
$$

Denote $\hat{\nu}_{m, j, S}$ the empirical estimate of $\bar{\nu}_{j, S}$ computed from $X_{1: m}$.

Denote $\hat{\nu}_{m, j, S}$ the empirical estimate of $\bar{\nu}_{j, S}$ computed from $X_{1: m}$.
To build \hat{S}_{m}, we do as follows. Fix $0 \leq \ell \leq d$.

1. Set $\hat{S}_{m}=\emptyset$.
2. While $\left|\hat{S}_{m}\right|<\ell$, compute $j \in \arg \max _{k \in \hat{S}_{m}^{c}} \hat{\nu}_{m, k, \hat{S}_{m}}$ and include j in \hat{S}_{m}.

Theoretical guarantees of FSC estimator.

Theorem. Take $m=n / 2$ and assume $d=\beta m$ for $\beta \in(0,1)$ and suppose $\lambda_{0}>0$, $0<p_{0}<1$ and that the following conditions hold:

Theoretical guarantees of FSC estimator.

Theorem. Take $m=n / 2$ and assume $d=\beta m$ for $\beta \in(0,1)$ and suppose $\lambda_{0}>0$, $0<p_{0}<1$ and that the following conditions hold:

- $\exists \Gamma_{1} \in(0,1]$ s.t. for all $S \subset\{-d, \ldots,-1\}$ such that $\Lambda \nsubseteq S$ and $k \in \Lambda \backslash S$,

$$
\max _{x_{s} \in\{0,1\}^{s}} \sum_{j \in \Lambda \backslash S \cup\{k\}} \frac{\delta_{j}}{\delta_{k}}\left|\mathbb{P}_{x_{s}}\left(X_{j}=1 \mid X_{k}=0\right)-\mathbb{P}_{x_{s}}\left(X_{j}=1 \mid X_{k}=1\right)\right| \leq\left(1-\Gamma_{1}\right) .
$$

Theoretical guarantees of FSC estimator.

Theorem. Take $m=n / 2$ and assume $d=\beta m$ for $\beta \in(0,1)$ and suppose $\lambda_{0}>0$, $0<p_{0}<1$ and that the following conditions hold:

- $\exists \Gamma_{1} \in(0,1]$ s.t. for all $S \subset\{-d, \ldots,-1\}$ such that $\Lambda \nsubseteq S$ and $k \in \Lambda \backslash S$,

$$
\max _{x_{s} \in\{0,1\}^{s}} \sum_{j \in \Lambda \backslash S \cup\{k\}} \frac{\delta_{j}}{\delta_{k}}\left|\mathbb{P}_{x_{S}}\left(X_{j}=1 \mid X_{k}=0\right)-\mathbb{P}_{x_{S}}\left(X_{j}=1 \mid X_{k}=1\right)\right| \leq\left(1-\Gamma_{1}\right) .
$$

- $\exists \Gamma_{2} \in(0,1]$ s.t. for all $S \subset\{-d, \ldots,-1\}$ such that $\Lambda \subset S$ and $k \notin \Lambda$,

$$
\sum_{j \in \Lambda \backslash S^{\times}} \max _{s \in\{0,1\}^{S}}\left|\mathbb{P}_{x_{S}}\left(X_{k}=1 \mid X_{j}=0\right)-\mathbb{P}_{x_{S}}\left(X_{k}=1 \mid X_{j}=1\right)\right| \leq \Gamma_{2}
$$

Suppose also $|\Lambda| \leq L$ with L known and let $\hat{\Lambda}_{n}$ be the FSC estimator constructed with parameters $\ell=L$ and $\alpha=(1+\eta) \log (n)$ for $\eta>0$.

Theoretical guarantees of FSC estimator.

Theorem. Take $m=n / 2$ and assume $d=\beta m$ for $\beta \in(0,1)$ and suppose $\lambda_{0}>0$, $0<p_{0}<1$ and that the following conditions hold:

- $\exists \Gamma_{1} \in(0,1]$ s.t. for all $S \subset\{-d, \ldots,-1\}$ such that $\Lambda \nsubseteq S$ and $k \in \Lambda \backslash S$,

$$
\max _{x_{s} \in\{0,1\}^{s}} \sum_{j \in \Lambda \backslash S \cup\{k\}} \frac{\delta_{j}}{\delta_{k}}\left|\mathbb{P}_{x_{S}}\left(X_{j}=1 \mid X_{k}=0\right)-\mathbb{P}_{x_{s}}\left(X_{j}=1 \mid X_{k}=1\right)\right| \leq\left(1-\Gamma_{1}\right) .
$$

- $\exists \Gamma_{2} \in(0,1]$ s.t. for all $S \subset\{-d, \ldots,-1\}$ such that $\Lambda \subset S$ and $k \notin \Lambda$,

$$
\sum_{j \in \Lambda \backslash S^{\times}} \max _{s \in\{0,1\}^{s}}\left|\mathbb{P}_{x_{S}}\left(X_{k}=1 \mid X_{j}=0\right)-\mathbb{P}_{x_{S}}\left(X_{k}=1 \mid X_{j}=1\right)\right| \leq \Gamma_{2}
$$

Suppose also $|\Lambda| \leq L$ with L known and let $\hat{\Lambda}_{n}$ be the FSC estimator constructed with parameters $\ell=L$ and $\alpha=(1+\eta) \log (n)$ for $\eta>0$. Then \exists a constant $C>0$ such that

$$
\mathbb{P}\left(\hat{\Lambda}_{n} \neq \Lambda\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

as long as

$$
\min _{j \in \Lambda} \delta_{j}^{2} \geq C \frac{\log (n)}{n}
$$

Simulations: FSC estimator

$$
l=5, d=180, \text { lags }=\{11,100\} \text {, with cut }
$$

$\ell=5 . d=50$. lags $=\{11.21\}$, with cut

Simulations: FSC estimator

$$
l=5, d=n / 4, \text { lagd }=\{11,21\} \text {, with eut }
$$

Simulations: transition probability estimation

MTD model used: $p(x)=\lambda_{0} p_{0}+\lambda_{i} p_{i}\left(x_{i}\right)+\lambda_{j} p_{j}\left(x_{j}\right)$ where $\lambda_{0}=0.2, p_{0}=0.5$, $\lambda_{i}=\lambda_{j}=0.4,1-p_{i}(0)=p_{i}(1)=1-p_{j}(0)=p_{j}(1)=0.7$.

For each choice of i, j, d, and n we simulated 100 realizations. For each realization, we estimated the transition probability $p\left(0 \mid 0^{d}\right)$.

Model parameter			Method	Sample size (n)					
i	,	d		256	512	1024	2048	4096	8192
1	5	5	FSC(2)	0.0774	0.0682	0.0506	0.0286	0.0174	0.0133
1	5	5	FSC(5)	0.0745	0.0835	0.0602	0.0426	0.0222	0.0129
1	5	5	PCP	0.0965	0.0786	0.0577	0.0432	0.0242	0.0131
1	5	5	Naive	0.1518	0.0933	0.0624	0.0455	0.0340	0.0252
1	5	10	FSC(5)	0.0836	0.0842	0.0659	0.0425	0.0228	0.0141
1	10	15	FSC(5)	0.0864	0.0781	0.0641	0.0438	0.0249	0.0151
1	15	20	FSC(5)	0.0682	0.0802	0.0778	0.0534	0.0285	0.0138
11	100	120	FSC(5)	-	-	0.0838	0.0647	0.0312	0.0169
1	10	n/8	FSC(5)	0.0563	0.0543	0.0780	0.0698	0.0504	0.0105

Simulations: FSC without CUT

$$
\ell=2 . d=50 . \text { lags }=\{11,21\}, \text { without cut }
$$

Final comments

We could estimate \wedge by

$$
\hat{\Lambda}_{B I C}=\arg \min _{S \in \mathcal{P}(\{-d, \ldots,-1\})}\left\{-\log M L_{S}\left(X_{1}, \ldots, X_{n}\right)+\frac{(3|\Lambda|+1)}{2} \log (n)\right\}
$$

Can we compute $\hat{\Lambda}_{B I C}$ efficiently? The models are not nested!

Final comments

We could estimate \wedge by

$$
\hat{\Lambda}_{B I C}=\arg \min _{S \in \mathcal{P}(\{-d, \ldots,-1\})}\left\{-\log M L_{S}\left(X_{1}, \ldots, X_{n}\right)+\frac{(3|\Lambda|+1)}{2} \log (n)\right\}
$$

Can we compute $\hat{\Lambda}_{B I C}$ efficiently? The models are not nested!
What about multivariate MTD models?

