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Self-Normalization

See de la Pena et. al. (2009) for a comprehensive ac-
count of the theory and applications of Self-normalization.

Pseudo-Maximization (Method of Mixtures)

The method of Pseudo-Maximization (also known as the
method of mixtures) was used in de la Pena et. al. (2004)
and is based on the following:

Canonical Assumption.

Let (A, B) be an arbitrarily dependent vector of random
variables, with B > 0. Assume that —oo < A < oco. Then,
the pair is said to satisfy the Canonical Assumption if

Eexp(AM — \°B?/2) < 1.




Lemmas 1-3 present processes that satisfy the canonical
assumption.

Lemma 1 Let W; be a standard Brownian Motion. Assume
that 7' is a stopping time such that T' < oo a.s. Then for all
—00 < A< 00

Eexp{AWr — A\?T/2} < 1.

Lemma 2 Let M; be a continuous, square-integrable mar-
tingale, with My = 0. Then, for all —oco < A < o0,

exp{A\M; — X\ < M >; /2} < 1.

If M; is ony assumed to be a continuous local martingale, the
inequality is also valid (by application of Fatou’s lemma).

Lemma 3 Let {d;} be a sequence of variables adapted to an
increasing sequence of o-fields {F; }. Assume that the d;’s are
conditionally symmetric (i.e., £(d;|F;—1) = L(—d;|Fi-1)).
Then,

Eexp{\) d;i—X\) d7/2} <1,
=] =]

for all —0co < A < 0.




An exponential inequality

Theorem 2. (de la Pena, Klass and Lai (AOP)) Let A, B with
B > 0 be random variables satisfying the canonical assumption for all
A € R. Then

A
P /B2 + (EB)?

> 1) < V2exp(—z2/4)
for all 2 > 0.

The proof of this result is based on the following lemma.

Lemma Let A, B with B > 0 be two random variables satisfying the
canonical condition for all A € R. Then for all y > 0,

2
4 L.

Y
B ¢
/B2 + 2 PUoEr 7)) S

Proof: Multiplying both sides of the canonical condition by
(2m) /2y exp(—A?y?/2) (with y > 0) and integrating over ), we ob-
tain by using Fubini’s theorem that
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By Schwarz’s inequality,



1/2
A? Yy exp{ srgr=my 2(32+y2)} B2 + 2
EeXp{4(B2+y2)}§{<E B? {2 H

1/2
B2
= <E e o 1) ;
Y
Since E, / %2— +1< E(% + 1), the special case y = EB above gives

Eexp(A?/[4(B% + (EB)?]) < V2.
Then, using Markov’s inequality and this we get

Al B A?
VrEree: 2o~ Mam e Eey

> 2} < VB exp(—s?/4).



Corollary (Law of the Iterated Logarithm)

Let d;, F; a sequence of conditionally symmetric random
variables. Then, using Lemma 3 and a mixture introduced
by Robbins and Sigmund we obtain the following,

el |
lim sup - iz 5 %
n—r o0 \/2 Zizl dz2 log log Zi:l d’%

on the set {limy, o0 Y 1y di = 00 .

)




Conditionally Independent (Tangent) Decoupling

Please refer to de la Pena and Giné (1999) and de la
Pena (2019) for a more comprehensive account of the theory
as well as additional pertinent references.

The theory of martingale inequalities has been central
in the development of modern probability theory. This the-
ory has been expanded widely through the introduction of
the conditionally independent (tangent) decoupling principle
which provides a general approach for handling problems in-
volving dependent variables.

Let {d;} and {e;} be two sequences of random variables
adapted to the o-fields {F;}. Then {d;} and {e;} are said to
be tangent with respect to {F;} if, for all 7,

L(d;|Fi—1) = L(es|Fi-1),

where £(d;|F;—1) denotes the conditional probability law of
di given Fi—l-

Let dy,...,d, be an arbitrary sequence of dependent random
variables adapted to an increasing sequence of o—fields {F;}.
Then, one can construct a sequence eq, ...., e,, of random vari-
ables which is conditionally independent given G = F,,. The
construction proceeds as follows: First we take e; and d; to
be two independent copies of the same random mechanism.
Having constructed ds,...,d;—1;€e1,...,e;—1, the t¢th pair of



variables d; and e; comes from i.i.d. copies of the same ran-

dom mechanism, given F;_,. It is easy to see that using this
construction and taking

F, =F;Voley,...,e),
the sequences {d;}, {e;} satisfy
L(di|Fi_y) = L(es|Fi_1) = L(es]G),

and the sequence {eq,....,e,} is conditionally independent
given G = F,

A sequence {e; } of random variables satisfying the above
conditions is said to be a decoupled tangent version of {d;}.
Moreover, the sequences {d; — e;}, is conditionally symmet-
ric.



Corollary (A Universal LIL)

Let d;, F; a sequence of arbitrarily dependent variables
without moment assumptions. Let e; be its associated de-
coupled sequence. Then,

sy iy — 4
lim sup = 2z €) = 2
n—00 \/2 Zz’:l(di A 61')2 lOg log Zi:1<di - ei)z

on the set {lim, ,oo Y i (d; — €;)* = oo},

Y

A symmetrised extension of Kolmogorov’s LIL.
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Improved Algorithms for Linear Stochastic Bandits
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Abstract

We improve the theoretical analysis and empirical performance of algorithms for
the stochastic multi-armed bandit problem and the linear stochastic multi-armed
bandit problem. In particular, we show that a simple modification of Auer’s
UCB algorithm (Auer, 2002) achieves with high probability constant regret.
More importantly, we modify and, consequently, improve the analysis of the
algorithm for the for linear stochastic bandit problem studied by Auer (2002),
Dani et al. (2008), Rusmevichientong and Tsitsiklis (2010), Li et al. (2010).
Our modification improves the regret bound by a logarithmic factor, though
experiments show a vast improvement. In both cases, the improvement stems
from the construction of smaller confidence sets. For their construction we use a
novel tail inequality for vector-valued martingales.

1 Introduction

Linear stochastic bandit problem is a sequential decision-making problem where in each time step
we have to choose an action, and as a response we receive a stochastic reward, expected value of
which is an unknown linear function of the action. The goal is to collect as much reward as possible
over the course of n time steps. The precise model is described in Section 1.2.

Several variants and special cases of the problem exist differing on what the set of available
actions is in each round. For example, the standard stochastic d-armed bandit problem, introduced
by Robbins (1952) and then studied by Lai and Robbins (1985), is a special case of linear stochastic
bandit problem where the set of available actions in each round is the standard orthonormal basis of
R?. Another variant, studied by Auer (2002) under the name “linear reinforcement learning”, and
later in the context of web advertisement by Li et al. (2010), Chu et al. (2011), is a variant when the
set of available actions changes from time step to time step, but has the same finite cardinality in
each step. Another variant dubbed “sleeping bandits”, studied by Kleinberg et al. (2008), is the case
when the set of available actions changes from time step to time step, but it is always a subset of the
standard orthonormal basis of R?. Another variant, studied by Dani et al. (2008), Abbasi-Yadkori
et al. (2009), Rusmevichientong and Tsitsiklis (2010), is the case when the set of available actions
does not change between time steps but the set can be an almost arbitrary, even infinite, bounded
subset of a finite-dimensional vector space. Related problems were also studied by Abe et al.
(2003), Walsh et al. (2009), Dekel et al. (2010).

In all these works, the algorithms are based on the same underlying idea—the optimism-in-the-
face-of-uncertainty (OFU) principle. This is not surprising since they are solving almost the same
problem. The OFU principle elegantly solves the exploration-exploitation dilemma inherent in the
problem. The basic idea of the principle is to maintain a confidence set for the vector of coefficients
of the linear function. In every round, the algorithm chooses an estimate from the confidence
set and an action so that the predicted reward is maximized, i.e., estimate-action pair is chosen
optimistically. We give details of the algorithm in Section 2.




A Proof of Theorem 1

For the proof of Theorem 1 we will need the following two lemmas. Both lemmas use the same
assumptions and notation as the theorem. The first lemma is a standard supermartingale argument
adapted to randomly stopped, vector valued processes.

Lemma 8. Let A\ € R? be arbitrary and consider for any t > 0

M} = exp (Z [HL()}’%_XS) - % (A,X‘9)2]> .

s=1

Let T be a stopping time with respect to the filtration {F;}72,. Then M} is almost surely
well-defined and

E[M}) <1.

Proof of Lemma 8. We claim that { M} }$2 is a supermartingale. Let

N (A Xp) 1 5 2
D} =exp (ﬂﬁ—t—i(x,m") .

Observe that by conditional R-sub-Gaussianity of 7; we have E[D} | F,—1] < 1. Clearly, D) is
F,-measurable, as is M. Further,

E(M} | F,_y) =E[M}---D} \D} | F1] =D} --- D} E[D} | Fra) < M,

showing that {M}}52, is indeed a supermartingale and in fact E[M})] < 1.

Now, we argue that M7 is well-defined. By the convergence theorem for nonnegative su-
permartingales, M2 = lim; oo M} is almost surely well-defined. Hence, M} is indeed
well-defined independently of whether 7 < oo holds or not. Next, we show that E[M)}] < 1
For this let Q) = fo\xin{r,t} be a stopped version of (M});. By Fatou’s Lemma, E[M}] =
E[lim inf;_,0 Q)] < liminf, o E[Q?] < 1, showing that E[M2}] < 1 indeed holds. a

The next lemma uses the “method of mixtures” technique (cf. Chapter 11, de la Pefia et al. 2009).
In fact, the lemma could also be derived from Theorem 14.7 of de la Pefia et al. (2009).

Lemma 9 (Self-normalized bound for vector-valued martingales). Let 7 be a stopping time with
respect to the filtration { Fy}$2. Then, for § > 0, with probability 1 — 6,

lt}VT 1/2 tv_l/z
15 < 2 log (0 )

Proof of Lemma 9. Without loss of generality, assume that R = 1 (by appropriately scaling S, this
can always be achieved). Let

t
: 1
7 - ZXSXJ M} = exp ((A,Sﬁ =5 Il)\llfx,) .
s=1

Notice that by Lemma 8, the mean of M? is not larger than one.

Let A be a Gaussian random variable which is independent of all the other random variables and
whose covariance is V1. Define

M, = E[M} | Fs] ,

where F.. is the tail o-algebra of the filtration i.e. the o-algebra generated by the union of the all
events in the filtration. Clearly, we still have E[M,] = E[E[M} | A]] < 1.

11




196 14 Multivariate Self-Normalized Processes with Matrix Normalization

14.2 Moment and Exponential Inequalities
via Pseudo-Maximization

Consider the canonical assumption (14.4). If the random function exp{6’A —
8'C8/2} could be maximized over 6 inside the expectation, taking the maximizing
value 6 = C'A in (14.4) would yield Eexp{A'C~'A /2} < 1. This in turn would
give the exponential bound P(||C~1/2A|| > x) < exp(—x>/2). Although we cannot
interchange the order of max, and E that is needed in the above argument, we can
integrate both sides of (14.4) with respect to a probability measure F on 6 and use
Fubini’s theorem to interchange the order of integration with respect to P and F. To
achieve an effect similar to maximizing the random function exp{6'A - 0'C6/2},
F would need to assign positive mass to and near 8 = C- 1A that maximizes
exp{6'A — 6'C0 /2}, for all possible realizations of (A.C). This leads us to choose
probability measures of the form dF (0) = £(6)d6. with f positive and continuous.
Note that

A e""‘"'"’“’/{f(e)da . 'A/z/ e (0-Clayce-c 'm/:»f(e)d& (14.7)
ed

Rrd

Let Anax(C) and Amin(C) denote the maximum and minimum eigenvalues of C,
respectively. Since (6 —C1A)'C(6 —C1A) > Ayin(C)||6 —C 'AJ[%, it follows that
as 2'min(C) 200y

(0—C-'AYC(0 c1a)2 (27! m/2 ]
e 3 “f(8)do ~ - C™A). (14.8)
/. £(0)d0 ~ ZZ— f(C14)

Combining (14.7) with (14.8) yields Laplace’s asymptotic formula that relates the
integral on the left-hand side of (14.7) to the maximum value exp(A'C14/2)
of exp{8’A — 8'CA/2}. Thus integration of exp(8’'A — 0'C6/2) with respect to
the measure F provides “pseudo-maximization” of the integrand over 6 when
Amin(C) — e=. By choosing f appropriately to reflect the growth rate of C~1/24,
we can extend the moment and exponential inequalities in Sect. 12.2 to the multi-
variate case. In particular, we shall prove the following two theorems and a related
lemma.

Theorem 14.7. Let A and C satisfy the canonical assumption (14.4). Let V be a
positive definite nonrandom matrix. Then

det(V) . l ; i _

1
Eexp{A'(C+V)7'a/4} < {E\/dct(lﬁ-V’lC)}- . (14.10)

Proof. Put f(8) = (2m) 4/*\/detVexp(—0'V0/2). 0 € R?, in (14.7) after multi-
plying both sides of (14.4) by £(6) and integrating over 6. By Fubini's theorem,
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lil’ UCB : An Optimal Exploration Algorithm for Multi-Armed

J *
Bandits
Kevin Jamieson KGJAMIESON @ WISC.EDU
Matthew Malloy MMALLOY @WISC.EDU
Robert Nowak NOWAK @ECE.WISC.EDU
University of Wisconsin
Sébastien Bubeck SBUBECK @PRINCETON.EDU
Princeton University
Abstract

The paper proposes a novel upper confidence bound (UCB) procedure for identifying the arm with
the largest mean in a multi-armed bandit game in the fixed confidence setting using a small number
of total samples. The procedure cannot be improved in the sense that the number of samples
required to identify the best arm is within a constant factor of a lower bound based on the law of
the iterated logarithm (LIL). Inspired by the LIL, we construct our confidence bounds to explicitly
account for the infinite time horizon of the algorithm. In addition, by using a novel stopping time
for the algorithm we avoid a union bound over the arms that has been observed in other UCB-
type algorithms. We prove that the algorithm is optimal up to constants and also show through
simulations that it provides superior performance with respect to the state-of-the-art.

Keywords: Multi-armed bandit, upper confidence bound (UCB), iterated logarithm

1. Introduction

This paper introduces a new algorithm for the best arm problem in the stochastic multi-armed bandit
(MAB) setting. Consider a MAB with n arms, each with unknown mean payoff p1,..., ty, in
[0,1]. A sample of the ith arm is an independent realization of a sub-Gaussian random variable
with mean p;. In the fixed confidence setting, the goal of the best arm problem is to devise a
sampling procedure with a single input ¢ that, regardless of the values of ji1,. .., jip, finds the arm
with the largest mean with probability at least 1 — §. More precisely, best arm procedures must
satisfy sup,,; .. P(i # i*) < 4, where i* is the best arm, i an estimate of the best arm, and the
supremum is taken over all set of means such that there exists a unique best arm. In this sense,
best arm procedures must automatically adjust sampling to ensure success when the mean of the
best and second best arms are arbitrarily close. Contrast this with the fixed budget setting where the
total number of samples remains a constant and the confidence in which the best arm is identified
within the given budget varies with the setting of the means. While the fixed budget and fixed
confidence settings are related (see Gabillon et al. (2012) for a discussion) this paper focuses on the
fixed confidence setting only.

The best arm problem has a long history dating back to the ’50s with the work of Paulson
(1964); Bechhofer (1958). In the fixed confidence setting, the last decade has seen a flurry of

* Part of the research described here was carried out at the Simons Institute for the Theory of Computing. We are
grateful to the Simons Institute for providing a wonderful research environment.

© 2014 K. Jamieson, M. Malloy, R. Nowak & S. Bubeck.




LIL’ UCB : AN OPTIMAL EXPLORATION ALGORITHM FOR MULTI-ARMED BANDITS

Note that the algorithm obtains the optimal query complexity of H; log(1/6) + Hs up to con-
stant factors. We remark that the theorem holds with any value of A satisfying (7). Inspection of (7)

2
shows that as § — 0 we can let A tend to gi[;—ﬁ- . We point out that the sample complexity bound

in the theorem can be optimized by choosing ¢ and 3. For a setting of these parameters in a way that

2
is more or less faithful to the theory, we recommend taking e = 0.01, 8 = 1,and A = # . For

improved performance in practice, we recommend applying footnote 2 and setting e = 0, 5 = 0.5,
A=1+10/nand é§ € (0,1), which do not meet the requirements of the theorem, but work very
well in our experiments presented later. We prove the theorem via two lemmas, one for the total
number of samples taken from the suboptimal arms and one for the correctness of the algorithm. In
the lemmas we give precise constants.

4. Proof of Theorem 2

Before stating the two main lemmas that imply the result, we first present a finite form of the law
of iterated logarithm. This finite LIL bound is necessary for our analysis and may also prove useful
for other applications.

Lemma 3 Let X1, Xs,... be i.i.d. centered sub-Gaussian random variables with scale param-
eter 0. For any ¢ € (0,1) and 6 € (0,log(1 + €)/e)? one has with probability at least 1 —

1+e€
2 )
%(log(lﬁ)) forallt > 1,

t .
ZXS < (14 VE)4/202%2(1 +¢€)tlog <1—9—gi(—(—1-3i@>

s=1

Proof We denote S; = Zi:l X, and ¢¥(z) = \/2021: log (%—)). We also define by induction

the sequence of integers (uy) as follows: ug = 1, ug+1 = [(1 + €)ug].
Step 1: Control of S,,,k > 1. The following inequalities hold true thanks to an union bound
together with Chernoff’s bound, the fact that uj, > (1 + £)*, and a simple sum-integral comparison:

P(3k>1:8y = VIi+tep(uw)) < Zexp (—(1 +¢) log (lo—g%"—)»
k=1

= 1+e 1+e
Y (mdem) < 0+D) (mdem) -

k=1

IA

Step 2: Control of S;, ¢ € (uy, ur1). Adopting the notation [n] = {1,...,n}, recall that Hoeffd-
ing’s maximal inequality’ states that for any m > 1 and 2 > 0 one has

P(3t € [m]st. S > ) <exp (——“’3——) .

20°m

2. Note ¢ is restricted to guarantee that 10g(%)—t—)) is well defined. This makes the analysis cleaner but in practice
one can allow the full range of § by using log(l—‘M%M) instead and obtain the same theoretical guarantees.
3. Itis an easy exercise to verify that Azuma-Hoeffding holds for martingale differences with sub-Gaussian increments,

which implies Hoeffding’s maximal inequality for sub-Gaussian distributions.
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TAYLOR’S LAW



It has been used as a tool in studies in De-
mography, Biology and Physics, among others.
Thousands of papers have been dedicated to the
study of Taylor's Law. Important surveys on the
topic are Kendal (2004), Eisler et al (2008) and
Meng (2015). This talk is partly based partly
in joint work with Mark Brown and Joel Cohen

(2017).



Taylor's |laws nature 1961

In multiple sets of samples, the variance of
population density is proportional to a power
of the mean population density.

b, a0,

log (variance) = log (a) + b - log (mean).

variance = a(mean)

variance /(mean)’ = a, a > 0.

Taylor stated no model of error (deviations
from exact equality).
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Norway: mean & variance of populations of

g(Var(PopDen))

L§ R R
T
D
*
oo

$ w0
ow on O

- 2.85

2.75

) — 2010 (g)
erohen Xu Brunborg 2013 1
l 1 i ; ] i
132 136 14 142

Log(Mean(PopDen))



