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1 Abundance Data
The study of abundance of species (plants or animals) is a central theme in ecology, as it is a measure of the wellness
of a species in a given ecosystem. This abundance can be defined in two different ways.

Definition 1.1. The standard abundance of a species is the total number of individuals of this species.
The relative abundance of a species in an ecosystem is the proportion of individuals of the species among all
individuals from all species.

Example 1.2. Consider the extremely childish example where we are located in the savanna, and our ecosystem is
composed as follow.

Lions Zebras Buffalos Hyenas Total
12 36 48 24 120

10 % 30% 40% 20% 100%

The vector (12, 36, 48, 24) is the standard abundance of our ecosystem, while the vector (0.1, 0.3, 0.4, 0.2) is the relative
abundance.

Remark 1.3. Relative abundance data are therefore compositional data, i.e. taking values in the simplex:

Sd−1 =

{
(y1, . . . , yd) ∈]0; 1[d |

d∑
i=1

yi = 1

}
. (1)

The species standard abundance distribution (see McGill et al. (2007) for details) has been particularly studied in the
literature: it describes the commonness and rarity of species in an ecosystem.
In this case, count data are considered, and distributions can be modeled for example with Poisson models.
Relative abundance is however an attractive notion since it could be a good measure of the biodiversity of an
ecosystem. In this case, probability distributions on the simplex can be considered, such as the Dirichlet distribution
µ

(d)
α on Rd with density:

f(y1, . . . , yd) =
Γ
(∑d

i=1 αi

)
Γ(α1) . . . Γ(αd)

d∏
i=1

yαi−1
i (2)

for (y1, . . . , yd) ∈ Sd−1.
In all that follows, we will focus on relative abundance.
The abundance of a species can be explained by several exogenous variables. One can mention climatic variables such
as the temperature or the precipitation. This leads to regression problems for compositional data, where methods seen
in the first lesson can be applied.
However, the abundance of one species is also affected by the abundance of other species, since there always exists a
competition between them. Therefore, one can immediately guess that the abundance of species in a given ecosystem
is a dynamic process, varying along the time.
Here we will propose time series models for abundance data, in order to explain the dynamic of abundance.
For simplification purpose, we will not consider in our models the impact of exogenous variables on the abundance,
but only the impact of species between them.
Just like regression models for the static case, we will present two approaches: data transformation and «Stay in the
simplex» approach.
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2 General framework
In all that follows, we will study the relative abundance along time t ∈ Z of d > 2 studies in a given ecosystem,
modeled by a sequence Y (t) =

(
Y

(t)
1 , . . . , Y

(t)
d

)
of random variables, valued in Sd−1.

Remark 2.1. If there is a special dynamic for the abundance, the random variables
(
Y (t))

t∈Z are not independent.

We will assume that we have in our possession a sample
(
y(t))

06t6N
∈ SN

d−1 of this abundance, where y(t) is a
realization of the random variable Y (t).
The following example is derived from a study by Svensson (2006).

Example 2.2 (Scandinavian birds). Let’s consider an ecosystem composed by three alpine birds species: «Anthus
pratensis», «Calcarius lapponicus» and «Oenanthe oenanthe». The relative abundance of this ecosystem has been
registered from 1964 to 2001 and can be found in Table 2.
Considering that time t = 0 corresponds to the year 1964, we have a sample of N = 38 abundances that can be written
y(t) =

(
y

(t)
1 , y

(t)
2 , y

(t)
3

)
, 0 6 t 6 N , and a graphical representation of the time series is presented in Figure 1.

Figure 1 – Graphical Representation of the relative abundance of Scandinavian birds along time.

3 Data transformation
As in the static case, the idea is to use a one-to-one mapping

g : Sd−1 −→ Rk

for some k.
We can take for example the additive log-ratio:

alr : Sd−1 −→ Rd−1

y = (y1, . . . , yd) 7−→ z =
(

log
(

y1

yd

)
. . . , log

(
yd−1

yd

))
.

(3)

We thus transform our abundance time series
(
Y (t))

t
valued in the simplex into a time series

(
Z(t))

t
valued in Rd−1

with:
∀t ∈ Z, Z(t) = alr

(
Y (t)

)
. (4)
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The process
(
Z(t)) is constraint-free, so we can use any classical time series method to model this latter process.

Finally, once we have obtained a fitted time series
(

Ẑ(t)
)

t
on the transformed scale, it is possible to get a fitted time

series
(

Ŷ (t)
)

t
on the original scale with:

∀t ∈ Z, Ŷ (t) = alr−1
(

Ẑ(t)
)

. (5)

Remark 3.1. Let us recall that we have:

alr−1 : Sd−1 −→ Rd−1

z = (z1, . . . , zd−1) 7−→ y =

(
exp(z1)

1 +
∑d−1

j=1 exp(zj)
, . . . ,

exp(zd−1)
1 +

∑d−1
j=1 exp(zj)

,
1

1 +
∑d−1

j=1 exp(zj)

)
.

(6)

One of the easiest model for the time series
(
Z(t)) is the VAR(p) model, with p ∈ N∗:

∀t ∈ Z, Z(t) = c +
p∑

i=1
ϕi · Z(t−i) + εt (7)

where ϕ1, . . . , ϕp are (d − 1) × (d − 1) matrices, c ∈ Rd−1 and (εt)t∈Z is a gaussian white noise in Rd−1.

Remark 3.2. Recall that a gaussian white noise (εt)t is a process of centered, independent and identically distributed
gaussian variables.

Proposition 3.3. For z ∈ C, let us denote ϕ(z) the complex matrix given by:

ϕ(z) = Id−1 −
p∑

j=1
zjϕj . (8)

If all the solutions of the equation:
det(ϕ(z)) = 0

have an absolute value strictly larger than 1, then there exists a unique stationary process satisfying equation (7).

Example 3.4 (Scandinavian Birds). Applying the alr transformation to the time series of Scandinavian birds given
in Table 2, we obtain the time series given in Figure 2 .

Figure 2 – alr transformation of the Scandinavian birds time series.
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A visual inspection of the partial autocorrelograms (see Figure 3) leads us to use a VAR(3) model for the time series(
Z(t))

t
.

Figure 3 – Partial autocorrelograms of the alr-transformed time series for the Scandinavian birds.

The estimates of the model parameters will not be given here, but allow us to compute fitted values on the transform
scale.

Finally, a backtransformation of those fitted values gives us fitted values on the original scale (see Figure 4).

Figure 4 – Scandinavian birds time series and their fitted values with a VAR(3) model.
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4 The «Stay in the simplex approach»
Let us recall first some basic ideas of the Dirichlet regression for compositional data.

The response variable Y follows the Dirichlet distribution of mean µ = (µ1, . . . , µd) and dispersion parameter ϕ with
for all 1 6 i 6 d − 1:

µi =
exp

(
β(i) · X

)
1 +

∑d−1
j=1 exp

(
β(j) · X

) (9)

where X is the vector of explanatory variables.

Taking into account the dynamic of the process leads to consider naturally the past values of the process as explanatory
variables themselves. Because we don’t consider exogenous variables in our model, we thus suggest that for all t ∈ Z,
Y (t) follows the Dirichlet distribution with mean µt = (µt,1, . . . , µt,d) satisfying:

∀1 6 i 6 d − 1, µt,i =
exp

(
β(i) · Y (t−1))

1 +
∑d−1

j=1 exp
(
β(j) · Y (t−1)

) (10)

and constant (for simplification purpose) dispersion parameter ϕ.

Remark 4.1. In equation (10), observe that we only took the previous value Y (t−1) as covariate. It is of course
possible to take several lag-values Y (t−2), Y (t−3), . . . in this expression.
In the following, we just take one lag-value in order to emphasize the main idea of the model.

4.1 Some properties about Markov Chains
Definition 4.2 (Transition Kernel). Let us consider (E, E) and (F, F) two measurable spaces.
An application K : E × F −→ [0; 1] is a transition kernel on E × F if:

• for all x ∈ E the application K(x, ·) is a probability measure;

• fo rall B ∈ F , the application K(·, B) is E-measurable.

Definition 4.3 (Markov chain). Consider a stochastic process
(
Y (t))

t∈Z valued in a measurable space (E, E), and
denote for all t ∈ Z:

F−
t = σ

(
Y (t−1), Y (t−2), . . .

)
(11)

and:
Ft = σ

(
Y (t)

)
. (12)

The process Y (t) is a Markov chain if for any measurable bounded function f : E −→ R:

E
(

f
(

Y (t)
)

| F−
t−1

)
= E

(
f
(

Y (t)
)

| Ft−1

)
. (13)

Remark 4.4. Intuitively, this means that knowing the entire history of the process does not bring more information
than knowing the last value.

Definition 4.5. Let K be a transition kernel on E × E .
A Markov chain

(
Y (t))

t∈Z valued in (E, E has transition kernel K if for all t ∈ Z and all A ∈ E :

P
(

Y (t) ∈ A | Yt−1 = yt−1

)
= K(yt−1, A). (14)

In this case, the chain is said to be homogeneous.

4.2 Some properties about ergodicity
Definition 4.6. Consider a strongly stationary process

(
Y (t))

t∈Z valued in a measurable space (E, E), of law PY .

Let us define the shift operator σ : EZ −→ EZ by τ
(
(yt)t∈Z

)
= (yt+1)t∈Z.

The process
(
Y (t))

t∈Z is ergodic if for all τ -invariant event A ⊂ EZ:

PY (A) = 0 or 1. (15)
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Definition 4.7. Let K be a transition kernel on a measurable space (E, E). A probability π on E is said to be
K−invariant if:

π · K = π (16)

where:
π · K(A) =

∫
K(y, A)π(dy) (17)

Theorem 4.8. If a transition kernel K admits a unique invariant measure π, then there exists a unique strongly
stationary Markov chain

(
Y (t))

t
with transition kernel K, and it is ergodic.

4.3 Back to the model
We thus decide to model our abundance times series

(
Y (t))

t∈Z as a Markov chain with Dirichlet transition kernel K

with mean µ satisfying equation (10), and unknown dispersion parameter ϕ.

It can be shown that our kernel K satisfies the Doeblin’s condition:

Definition 4.9. A transition kernel K defined on E × E satisfies the Doeblin’s condition if there exists a constant
η > 0 and a probability measure λ on E such that:

∀A ∈ E , ∀y ∈ E, K(y, A) > η · λ(A). (18)

Lemma 4.10. Define for all i ∈ {1, . . . , d − 1} and all y ∈ Sd−1:

µi(y) =
exp

(
β(i) · y

)
1 +

∑d−1
j=1 exp

(
β(j) · y

) (19)

and:
µd(y) = 1

1 +
∑d−1

j=1 exp
(
β(j) · y

) . (20)

For all i ∈ {1, . . . , d}, there exists mi > 0 and Mi > 0 such that :

∀y ∈ Sd−1, mi 6 ϕµi(y) 6 Mi.

Proof.

I Since for all i ∈ {1, . . . , d} and all y ∈ Sd−1, µi(y) 6 1, we can take Mi = ϕ.

I For all j ∈ {1, . . . d − 1} and all y ∈ Sd−1, we have :

exp
(

β(j) · y
)
6 exp

(
‖β(j)‖1

)
.

Furthermore, for all i ∈ {1, . . . d − 1} and y ∈ Sd−1, the Cauchy-Schwarz inequality provides :

−‖β(i)‖2 · ‖y‖2 6 β(i) · y 6 ‖β(i)‖2 · ‖y‖2.

By equivalence of the norms, there exists K > 0 independent from y and i such that :

−‖β(i)‖2 · ‖y‖2 > −K‖β(i)‖2 · ‖y‖1 = −K‖β(i)‖2.

Hence, for all i ∈ {1, . . . , d − 1} and all y ∈ Sd−1 :

ϕµi(y)) > ϕ exp(−K‖β(i)‖2)
1 +

∑d−1
j=1 exp(‖β(j)‖1)

:= mi.

Finally, we naturally have :
ϕµd(y) > ϕ

1 +
∑d−1

j=1 exp(‖β(j)‖1)
:= md.

�

Proposition 4.11. The transition kernel K defined by (10) satisfies the Doeblin’s condition (18).
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Proof. According to Lemma 4.10, for all i ∈ {1, . . . , d} there exist mi, Mi > 0 such that:

∀y ∈ Sd−1, mi 6 ϕµi(y) 6 Mi.

Thus, for all i ∈ {1, . . . , d} and all y ∈ Sd−1:

Γ(ϕµi(y)) =
∫ 1

0
e−t · tϕµi(y)−1dt +

∫ +∞

1
e−t · tϕµi(y)−1dt

6
∫ 1

0
e−t · tmi−1dt +

∫ +∞

1
e−t · tMi−1dt

6 Γ(mi) + Γ(Mi) := ζi.

As a result, for all y ∈ Sd−1 and all A ∈ B(Sd−1), we have:

K(y, A) =
∫

1A

(
x1, . . . , xd−1, 1 −

d−1∑
i=1

xi

)
Γ(ϕ)

Γ(ϕµ1(y)) . . . Γ(ϕµd(y))

×

(
1 −

d−1∑
i=1

xi

)ϕµd(y)−1 d−1∏
i=1

x
ϕµi(y)−1
i dxi

>
∫

1A

(
x1, . . . , xd−1, 1 −

d−1∑
i=1

xi

)
Γ(ϕ)

ζ1 . . . ζd

(
1 −

d−1∑
i=1

xi

)Md−1 d−1∏
i=1

xMi−1
i dxi

> η × λ(A)

with η = Γ(ϕ) × Γ(M1) . . . Γ(Md)

ζ1 . . . ζd × Γ
(∑d

i=1 Mi

) and λ = Dir(M1, . . . , Md). �

The following proposition is then crucial:

Proposition 4.12. If K satisfies the Doeblin’s condition (18), then it admits a unique invariant probability measure
π.

Proof. We actually prove that this unique invariant probability measure satisfies:

∀y ∈ E, dT V (δyK, π) −→
n→+∞

0. (21)

I Step 1: Assume there exists π ∈ M1(E) such that:

∀y ∈ E, dT V (δyKn, π) −→
n→+∞

0.

Considering the limit in total variation, we have:

π = lim
n→+∞

δyKn

thus:
πK = lim

n→+∞
δyKn+1 = π.

The probability measure π is invariant for K.

I Step 2: Assume there exists another invariant measure π′ for K:

π′K = π′,

thus for all n ∈ N, π′ = π′Kn. Yet, we have in total variation distance lim
n→+∞

π′Kn = π. Indeed, for all A ∈ E :

|π′P n(A) − π(A)| =
∣∣∣∣∫

E

Kn(y, A)π′(dy) − π(A)
∣∣∣∣

=
∣∣∣∣∫

E

Kn(y, A) − π(A)π′(dy)
∣∣∣∣

6 sup
y∈E

|Kn(y, A) − π(A)|

6 sup
y∈E

|δyKn(A) − π(A)| −→
n→+∞

0.

Hence, we have π′ = π and the uniqueness of an invariant measure for K.
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I Step 3: Let us show at least that there exists a probability measure π ∈ M1(E) such that :

sup
y∈E

dT V (δyKn, π) −→
n→+∞

0

which will give us the desired result accorded to step 1.
Since K satisfies the Doeblin’s condition, there exists η > 0 and λ ∈ M1(E) such that:

∀Y ∈ E, ∀A ∈ E , K(y, A) > η · λ(A).

Dobrushin’s coefficient for P satisfies then:

c(K) = sup
y 6=z

dT V (δyK, δzK) 6 1 − η < 1.

Indeed, for y 6= z and all A ∈ E , we have :

δyK(A) − δzK(A) = K(y, A) − K(z, A)
= 1 − K(y, Ac) − K(z, A)
6 1 − ηλ(Ac) − ηλ(A)
6 1 − η.

In a similar way, we have δzK(A) − δyK(A) 6 1 − η and so:

|δyK(A) − δzK(A)| 6 1 − η.

As a result, dT V (δyK, δzK) 6 1 − η and c(K) 6 1 − η < 1. Furthermore, using the fact that:

∀ν1, ν2 ∈ M1(E), dT V (ν1K, ν2K) 6 c(K)dT V (ν1, ν2)

we have for all y ∈ E:
∀n ∈ N∗, dT V (δyKn, δyKn+1) 6 c(K)dT V (δyKn−1, δyKn)

and by immediate induction over n :

∀n ∈ N, ∀k ∈ N, dT V (δyKn, δyKn+k) 6 c(K)ndT V (δy, δyKk) 6 2 × c(K)n −→
n→+∞

0.

For all y ∈ E, the sequence (δyKn)n∈N is a Cauchy sequence in (M1(E), dT V ) which is complete, thus:

∀y ∈ E, ∃πy ∈ M1(E), dT V (δyKn, πy) −→
n→+∞

0.

Let y, z ∈ E, we have for all n ∈ N:

dT V (πy, πz) 6 dT V (πy, δzKn)︸ ︷︷ ︸
−→

n→+∞
0

+dT V (δyKn, δzKn) + dT V (δzKn, πz)︸ ︷︷ ︸
−→

n→+∞
0

.

Yet, for all n ∈ N, we have:

dT V (δyKn, δzKn) 6 c(K)n(δy, δz) 6 c(K)n −→
n→+∞

0.

As a result, dT V (πy, πz) = 0 and πy = πz. Hence, there exists π ∈ M1(E) such that:

sup
y∈E

dT V (δyKn, π) −→
n→+∞

0

which concludes the proof.

�

Corollary 4.13. There exists a unique strongly stationary Markov chain
(
Y (t))

t
satisfying (10), and it is ergodic.

Thus, there exists a unique strongly stationary abundance time series satisfying (10), and it is ergodic.
In the following, we assume that our abundance time series is indeed this particular time series.
The model parameters ϕ and β(1), . . . , β(d−1) can be estimated by the maximum of conditional likelihood, and ergod-
icity is an essential point here, because it ensures the strong consistency of these estimates, as well as their asymptotic
normality under some reasonable additional assumptions).
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Example 4.14 (Scandinavian Birds). If we try to apply our model to the Scandinavian Birds data of Table 2, we
obtain the following results:

ϕ̂ β
(1)
1 β

(1)
2 β

(1)
3 β

(2)
1 β

(2)
2 β

(2)
3

Estimates 171.61 3.70 1.16 -7.20 1.10 3.91 -7.32

Table 1 – Estimates in the Dirichlet model.

In Figure 5, we present the fitted values of abundance according to our model. Note that here, the previsions are made
step by step, i.e. the future value of the abundance Ŷ (t+1) is calculated according to the real abundance observed
Y (t).

Figure 5 – Fitted Values of abundance of Scandinavian Birds with the Dirichlet model.

What happens here is that there is actually not a lot of variation predicted for the future value, in comparison to the
present value (i.e. the one observed). The value of ϕ̂ is indeed quite high (ϕ̂ ≈ 171.61). This explains the fact that we
have the impression that the abundance predicted is the same as the observed one, but with a lag 1.
However, the observed time series for abundance presents a lot of variability, so there is a big suspicion on the estimates
ϕ̂. Recall that our estimators are asymptotically consistent, and we only had 38 values to compute our estimates.

One final question of interest is the interpretation of the parameters β(i) in equation (10).
Remark 4.15. Take again Example 4.14.
Assume that between t and t + 1, the abundance is evolving according to the following equation:

y(t+1) = y(t) + (c, −c, 0) (22)

i.e. the proportion of the first species increases by c, at the expense of the second one.
Consider the power balance between the two species defined by:

µ1,t

µ2,t
. (23)

One can easily show that this balance evolves according to:
µ1,t+1

µ2,t+1
µ1,t

µ2,t

= exp
(

c · (β(1)
1 + β

(2)
2 − β

(1)
2 − β

(2)
1 )
)

. (24)
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Once again, just like in the static case, the parameters of the model can be interpreted in terms of power balance.

5 Appendices
5.1 Scandinavian Birds Data

YEAR Anthus pratensis Calcarius lapponicus Oenanthe oenanthe
1964 0.69 0.19 0.12
1965 0.76 0.17 0.07
1966 0.64 0.28 0.08
1967 0.62 0.31 0.07
1968 0.59 0.35 0.06
1969 0.62 0.27 0.10
1970 0.57 0.36 0.07
1971 0.44 0.47 0.09
1972 0.45 0.47 0.08
1973 0.54 0.35 0.12
1974 0.48 0.42 0.10
1975 0.52 0.40 0.08
1976 0.45 0.41 0.13
1977 0.50 0.42 0.07
1978 0.49 0.35 0.15
1979 0.47 0.39 0.15
1980 0.54 0.37 0.09
1981 0.51 0.37 0.12
1982 0.54 0.30 0.16
1983 0.62 0.20 0.19
1984 0.58 0.25 0.17
1985 0.60 0.23 0.17
1986 0.63 0.21 0.16
1987 0.58 0.24 0.18
1988 0.66 0.19 0.15
1989 0.62 0.20 0.18
1990 0.59 0.19 0.22
1991 0.53 0.38 0.09
1992 0.61 0.19 0.19
1993 0.63 0.18 0.18
1994 0.54 0.38 0.07
1995 0.51 0.40 0.09
1996 0.68 0.16 0.16
1997 0.55 0.27 0.18
1998 0.50 0.38 0.12
1999 0.49 0.41 0.09
2000 0.61 0.32 0.08
2001 0.57 0.29 0.14

Table 2 – Table of relative abundance for the example of Scandinavian birds
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