Dynamical Modeling of Abundance Data in Ecology

Guillaume Franchi

ENSAI, Bruz

14 February 2022

Abundance Data

Outlines

Abundance Data

- I. Abundance Data
- II. General framework
- III. Data transformation
- IV. The «Stay in the simplex approach»
 - Some properties about Markov Chains
 - Some properties about ergodicity
 - Back to the model

Abundance Data

- II. General framework
- III. Data transformation
- IV. The «Stay in the simplex approach)
 - Some properties about Markov Chains
 - Some properties about ergodicity
 - Back to the model

3/44

Definition

The **standard abundance** of a species is the total number of individuals of this species.

4/44

The **standard abundance** of a species is the total number of individuals of this species.

The **relative abundance** of a species in an ecosystem is the proportion of individuals of the species among all individuals from all species.

Consider the extremely childish example where we are located in the savanna, and our ecosystem is composed as follow.

5/44

Consider the extremely childish example where we are located in the savanna, and our ecosystem is composed as follow.

Lions	Zebras	Buffalos	Hyenas	Total
12	36	48	24	120
10 %	30%	40%	20%	100%

Consider the extremely childish example where we are located in the savanna, and our ecosystem is composed as follow.

Lions	Zebras	ebras Buffalos Hyen		Total
12	36	48	24	120
10 %	30%	40%	20%	100%

The vector (12, 36, 48, 24) is the standard abundance of our ecosystem, while the vector (0.1, 0.3, 0.4, 0.2) is the relative abundance.

Remark

Abundance Data

Relative abundance data are therefore compositional data, i.e. taking values in the simplex:

$$S_{d-1} = \left\{ (y_1, \dots, y_d) \in]0; 1[^d \mid \sum_{i=1}^d y_i = 1 \right\}.$$

Data transformation

Outlines

- II General framework
- - Some properties about Markov Chains
 - Some properties about ergodicity
 - Back to the model

7/44

The abundance of a species can be explained by several exogenous variables:

The abundance of a species can be explained by several exogenous variables:

Data transformation

climatic variables;

The abundance of a species can be explained by several exogenous variables:

Data transformation

- climatic variables;
- pollution

The abundance of a species can be explained by several exogenous variables:

- climatic variables;
- pollution
- \implies leads to regression problems for compositional data.

The abundance of one species is also affected by the abundance of other species.

One can immediately guess that the abundance of species in a given ecosystem is a dynamic process, varying along the time.

We will propose time series models for abundance data, in order to explain the dynamic of abundance.

Data transformation

We will propose time series models for abundance data, in order to explain the dynamic of abundance.

Data transformation

We will not consider in our models the impact of exogenous variables on the abundance, but only the impact of species between them.

We will propose time series models for abundance data, in order to explain the dynamic of abundance.

Data transformation

We will not consider in our models the impact of exogenous variables on the abundance, but only the impact of species between them.

In all that follows, we will study the relative abundance along time $t \in \mathbb{Z}$ of $d \geqslant 2$ studies in a given ecosystem, modeled by a sequence $Y^{(t)} = \left(Y_1^{(t)}, \dots, Y_d^{(t)}\right)$ of random variables, valued in \mathcal{S}_{d-1} .

We will assume that we have in our possession a sample $\left(y^{(t)}\right)_{0\leqslant t\leqslant N}\in\mathcal{S}_{d-1}^{N}$ of this abundance, where $y^{(t)}$ is a realization of the random variable $Y^{(t)}$.

11/44

We will assume that we have in our possession a sample $\left(y^{(t)}\right)_{0\leqslant t\leqslant N}\in\mathcal{S}_{d-1}^{N}$ of this abundance, where $y^{(t)}$ is a realization of the random variable $Y^{(t)}$.

Example Scandinavian birds

We will assume that we have in our possession a sample $\left(y^{(t)}\right)_{0\leqslant t\leqslant N}\in\mathcal{S}_{d-1}^{N}$ of this abundance, where $y^{(t)}$ is a realization of the random variable $Y^{(t)}$.

Example Scandinavian birds

Consider an ecosystem composed by three alpine birds species: «Anthus pratensis», «Calcarius Iapponicus» and «Oenanthe oenanthe».

We will assume that we have in our possession a sample $\left(y^{(t)}\right)_{0 \leq t \leq N} \in \mathcal{S}_{d-1}^N$ of this abundance, where $y^{(t)}$ is a realization of the random variable $Y^{(t)}$.

Example Scandinavian birds

Consider an ecosystem composed by three alpine birds species: «Anthus pratensis», «Calcarius Iapponicus» and «Oenanthe oenanthe». The relative abundance of this ecosystem has been registered from 1964 to 2001:

We will assume that we have in our possession a sample $\left(y^{(t)}\right)_{0 \leq t \leq N} \in \mathcal{S}_{d-1}^N$ of this abundance, where $y^{(t)}$ is a realization of the random variable $Y^{(t)}$.

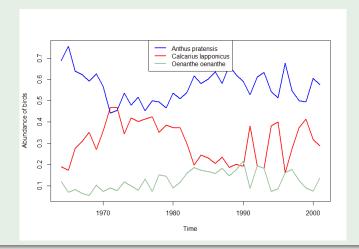
Example Scandinavian birds

Consider an ecosystem composed by three alpine birds species: «Anthus pratensis», «Calcarius Iapponicus» and «Oenanthe oenanthe». The relative abundance of this ecosystem has been registered from 1964 to 2001:

YEAR	Anthus	Calcarius	Oenanthe
1964	0.69	0.19	0.12
1965	0.76	0.17	0.07
1966	0.64	0.28	0.08
1967	0.62	0.31	0.07

Abundance Data

A graphical representation of the time series is presented below.



Outlines

- III. Data transformation
- - Some properties about Markov Chains
 - Some properties about ergodicity
 - Back to the model

As in the static case, the idea is to use a one-to-one mapping:

$$alr: \mathcal{S}_{d-1} \longrightarrow \mathbb{R}^{d-1}$$

 $y = (y_1, \dots, y_d) \longmapsto z = \left(\log\left(\frac{y_1}{y_d}\right) \dots, \log\left(\frac{y_{d-1}}{y_d}\right)\right).$

14/44

As in the static case, the idea is to use a one-to-one mapping:

$$alr: \mathcal{S}_{d-1} \longrightarrow \mathbb{R}^{d-1}$$

 $y = (y_1, \dots, y_d) \longmapsto z = \left(\log\left(\frac{y_1}{y_d}\right) \dots, \log\left(\frac{y_{d-1}}{y_d}\right)\right).$

We thus transform our abundance time series $(Y^{(t)})_{t}$ valued in the simplex into a time series $(Z^{(t)})_{t}$ valued in \mathbb{R}^{d-1} with:

$$\forall t \in \mathbb{Z}, \ Z^{(t)} = alr\left(Y^{(t)}\right).$$

Abundance Data

Once we have obtained a fitted time series $\left(\widetilde{Z^{(t)}}\right)_{t}$ on the transformed scale, it is possible to get a fitted time series $(\widehat{Y^{(t)}})_{t}$ on the original scale with:

$$\forall t \in \mathbb{Z}, \ \widehat{Y^{(t)}} = alr^{-1}\left(\widehat{Z^{(t)}}\right).$$

Once we have obtained a fitted time series $\left(\widetilde{Z^{(t)}}\right)_{\iota}$ on the transformed scale, it is possible to get a fitted time series $(\widehat{Y^{(t)}})_t$ on the original scale with:

$$\forall t \in \mathbb{Z}, \ \widehat{Y^{(t)}} = alr^{-1}\left(\widehat{Z^{(t)}}\right).$$

Remark

Once we have obtained a fitted time series $\left(\widehat{Z^{(t)}}\right)_t$ on the transformed scale, it is possible to get a fitted time series $\left(\widehat{Y^{(t)}}\right)_t$ on the original scale with:

$$\forall t \in \mathbb{Z}, \ \widehat{Y^{(t)}} = alr^{-1}\left(\widehat{Z^{(t)}}\right).$$

Remark

Let us recall that we have:

$$alr^{-1}: \mathcal{S}_{d-1} \longrightarrow \mathbb{R}^{d-1}$$

$$z = (z_1, \dots, z_{d-1}) \longmapsto \left(\frac{\exp(z_1)}{1 + \sum_{j=1}^{d-1} \exp(z_j)}\right)_{1 \leqslant i \leqslant d}.$$

One of the easiest model for the time series $\left(Z^{(t)}\right)$ is the $\mathbf{VAR}(p)$ model:

One of the easiest model for the time series $(Z^{(t)})$ is the **VAR**(p)model:

$$\forall t \in \mathbb{Z}, \ Z^{(t)} = c + \sum_{i=1}^{p} \phi_i \cdot Z^{(t-i)} + \varepsilon_t$$

where ϕ_1, \ldots, ϕ_p are $(d-1) \times (d-1)$ matrices, $c \in \mathbb{R}^{d-1}$ and $(\varepsilon_t)_{t\in\mathbb{Z}}$ is a gaussian white noise in \mathbb{R}^{d-1} .

General framework

Proposition

For $z \in \mathbb{C}$, let us denote $\phi(z)$ the complex matrix given by:

$$\phi(z) = I_{d-1} - \sum_{j=1}^{p} z^{j} \phi_{j}.$$

Proposition

For $z \in \mathbb{C}$, let us denote $\phi(z)$ the complex matrix given by:

$$\phi(z) = I_{d-1} - \sum_{j=1}^{p} z^{j} \phi_{j}.$$

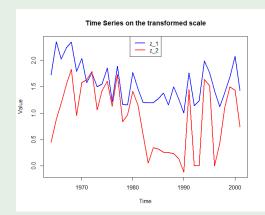
If all the solutions of the equation:

$$\det(\phi(z)) = 0$$

have an absolute value strictly larger than 1, then there exists a unique stationary process satisfying equation.

Example Scandinavian Birds

Applying the alr transformation to the time series of Scandinavian birds, we obtain the time series given below.

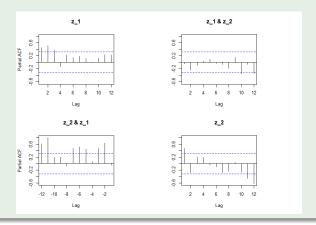


Example

A visual inspection of the partial autocorrelograms leads us to use a VAR(3) model for the time series $(Z^{(t)})_t$.

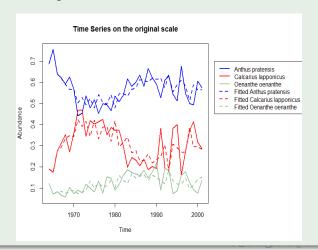
Example

A visual inspection of the partial autocorrelograms leads us to use a VAR(3) model for the time series $\left(Z^{(t)}\right)_t$.



Example

Finally, a backtransformation of those fitted values gives us fitted values on the original scale.



Outlines

Abundance Data

- I Abundance Data
- II. General framework
- III Data transformation
- IV. The «Stay in the simplex approach»
 - Some properties about Markov Chains
 - Some properties about ergodicity
 - Back to the model

Some properties about ergodicity

Some basic ideas of the Dirichlet regression for compositional data:

Some properties about ergodicity

Abundance Data

Some properties about Markov Chains

Some basic ideas of the Dirichlet regression for compositional data:

The response variable Y follows the Dirichlet distribution of mean $\mu = (\mu_1, \dots, \mu_d)$ and dispersion parameter ϕ with for all $1 \le i \le d-1$:

$$\mu_i = \frac{\exp\left(\beta^{(i)} \cdot X\right)}{1 + \sum_{j=1}^{d-1} \exp\left(\beta^{(j)} \cdot X\right)}$$

where X is the vector of explanatory variables.

Some properties about Markov Chains

Abundance Data

Taking into account the dynamic of the process leads to consider naturally the past values of the process as explanatory variables themselves.

Some properties about Markov Chains

Abundance Data

Some properties about ergodicity

Taking into account the dynamic of the process leads to consider naturally the past values of the process as explanatory variables themselves.

We thus suggest that for all $t \in \mathbb{Z}$, $Y^{(t)}$ follows the Dirichlet distribution with mean $\mu_t = (\mu_{t,1}, \dots, \mu_{t,d})$ satisfying:

Some properties about ergodicity

Abundance Data

Taking into account the dynamic of the process leads to consider naturally the past values of the process as explanatory variables themselves.

We thus suggest that for all $t \in \mathbb{Z}$, $Y^{(t)}$ follows the Dirichlet distribution with mean $\mu_t = (\mu_{t,1}, \dots, \mu_{t,d})$ satisfying:

$$\forall 1 \leqslant i \leqslant d - 1, \ \mu_{t,i} = \frac{\exp\left(\beta^{(i)} \cdot Y^{(t-1)}\right)}{1 + \sum_{j=1}^{d-1} \exp\left(\beta^{(j)} \cdot Y^{(t-1)}\right)}$$

and constant dispersion parameter ϕ .

Remark

Abundance Data

Observe that we only took the previous value $Y^{(t-1)}$ as covariate. It is of course possible to take several lag-values $Y^{(t-2)}, Y^{(t-3)}, \ldots$ in this expression.

Outlines

- I Abundance Data
- II General framework
- III Data transformation
- IV. The «Stay in the simplex approach»
 - Some properties about Markov Chains
 - Some properties about ergodicity
 - Back to the model

Some properties about Markov Chains

Back to the model

Definition Transition Kernel

Definition Transition Kernel

Let us consider (E, \mathcal{E}) and (F, \mathcal{F}) two measurable spaces.

Definition Transition Kernel

Let us consider (E,\mathcal{E}) and (F,\mathcal{F}) two measurable spaces. An application $K \colon E \times \mathcal{F} \longrightarrow [0;1]$ is a **transition kernel** on $E \times \mathcal{F}$ if:

Definition Transition Kernel

Let us consider (E, \mathcal{E}) and (F, \mathcal{F}) two measurable spaces. An application $K: E \times \mathcal{F} \longrightarrow [0;1]$ is a **transition kernel** on $E \times \mathcal{F}$ if:

• for all $x \in E$ the application $K(x, \cdot)$ is a probability measure;

Definition Transition Kernel

Let us consider (E,\mathcal{E}) and (F,\mathcal{F}) two measurable spaces. An application $K: E \times \mathcal{F} \longrightarrow [0;1]$ is a **transition kernel** on $E \times \mathcal{F}$ if:

- for all $x \in E$ the application $K(x, \cdot)$ is a probability measure;
- for all $B \in \mathcal{F}$, the application $K(\cdot, B)$ is \mathcal{E} -measurable.

Definition Markov chain

Consider a stochastic process $\left(Y^{(t)}\right)_{t\in\mathbb{Z}}$ valued in a measurable space (E,\mathcal{E}) , and denote for all $t\in\mathbb{Z}$:

Some properties about ergodicity

Some properties about Markov Chains

Definition Markov chain

Consider a stochastic process $(Y^{(t)})_{t \in \mathbb{Z}}$ valued in a measurable space (E, \mathcal{E}) , and denote for all $t \in \mathbb{Z}$:

$$\mathcal{F}_t^- = \sigma\left(Y^{(t-1)}, Y^{(t-2)}, \dots\right)$$

and:

Abundance Data

Definition Markov chain

Consider a stochastic process $(Y^{(t)})_{t\in\mathbb{Z}}$ valued in a measurable space (E, \mathcal{E}) , and denote for all $t \in \mathbb{Z}$:

$$\mathcal{F}_t^- = \sigma\left(Y^{(t-1)}, Y^{(t-2)}, \dots\right)$$

and:

Abundance Data

$$\mathcal{F}_t = \sigma\left(Y^{(t)}\right).$$

The process $Y^{(t)}$ is a **Markov chain** if for any measurable bounded function $f: E \longrightarrow \mathbb{R}$:

$$\mathbb{E}\left(f\left(Y^{(t)}\right) \mid \mathcal{F}_{t-1}^{-}\right) = \mathbb{E}\left(f\left(Y^{(t)}\right) \mid \mathcal{F}_{t-1}\right).$$

Some properties about Markov Chains

ome properties about ergodicity

Back to the model

Remark

Remark

Intuitively, this means that knowing the entire history of the process does not bring more information than knowing the last value.

```
Definition
```

Definition

Abundance Data

Let K be a transition kernel on $E \times \mathcal{E}$.

Some properties about Markov Chains

Definition

Let K be a transition kernel on $E \times \mathcal{E}$.

A Markov chain $(Y^{(t)})_{t \in \mathbb{Z}}$ valued in (E, \mathcal{E}) has transition kernel K if for all $t \in \mathbb{Z}$ and all $A \in \mathcal{E}$:

$$\mathbb{P}\left(Y^{(t)} \in A \mid Y_{t-1} = y_{t-1}\right) = K(y_{t-1}, A).$$

Definition

Let K be a transition kernel on $E \times \mathcal{E}$.

A Markov chain $(Y^{(t)})_{t \in \mathbb{Z}}$ valued in (E, \mathcal{E}) has transition kernel K if for all $t \in \mathbb{Z}$ and all $A \in \mathcal{E}$:

$$\mathbb{P}\left(Y^{(t)} \in A \mid Y_{t-1} = y_{t-1}\right) = K(y_{t-1}, A).$$

In this case, the chain is said to be homogeneous.

Outlines

Abundance Data

- I Abundance Data
- II. General framework
- III Data transformation
- IV. The «Stay in the simplex approach»
 - Some properties about Markov Chains
 - Some properties about ergodicity
 - Back to the model

```
Definition
```

Back to the model

Definition

Abundance Data

Consider a strongly stationary process $(Y^{(t)})_{t \in \mathbb{Z}}$ valued in a measurable space (E, \mathcal{E}) , of law \mathbb{P}_Y .

Some properties about ergodicity

Some properties about Markov Chains

Definition

Abundance Data

Consider a strongly stationary process $(Y^{(t)})_{t\in\mathbb{Z}}$ valued in a measurable space (E, \mathcal{E}) , of law \mathbb{P}_{Y} .

Let us define the shift operator $\sigma: E^{\mathbb{Z}} \longrightarrow E^{\mathbb{Z}}$ by $\tau\left((y_t)_{t\in\mathbb{Z}}\right)=(y_{t+1})_{t\in\mathbb{Z}}.$

Abundance Data

Back to the model

Definition

Consider a strongly stationary process $(Y^{(t)})_{t \in \mathbb{Z}}$ valued in a measurable space (E, \mathcal{E}) , of law \mathbb{P}_Y .

Let us define the shift operator $\sigma: E^{\mathbb{Z}} \longrightarrow E^{\mathbb{Z}}$ by $\tau\left((y_t)_{t\in\mathbb{Z}}\right)=(y_{t+1})_{t\in\mathbb{Z}}.$

The process $(Y^{(t)})_{t\in\mathbb{Z}}$ is **ergodic** if for all τ -invariant event $A \subset E^{\mathbb{Z}}$:

$$\mathbb{P}_Y(A) = 0 \text{ or } 1.$$

Remark

Back to the model

Remark

Abundance Data

The importance of ergodicity is that it allows to establish a strong law of large numbers.

Remark

Abundance Data

The importance of ergodicity is that it allows to establish a strong law of large numbers.

If $(Y_t)_{t\in\mathbb{Z}}$ is an ergodic process, for any measurable function $f\colon E^\mathbb{Z} \longrightarrow \mathbb{R}$ such that $\mathbb{E}\left(|f(Y)|\right) < +\infty$ we have:

$$\frac{1}{n} \sum_{k=1}^{n} f \circ \tau^{k} \longrightarrow \mathbb{E} (f(Y)) \mathbb{P}_{Y} - a.s.$$

Remark

Abundance Data

The importance of ergodicity is that it allows to establish a strong law of large numbers.

If $(Y_t)_{t\in\mathbb{Z}}$ is an ergodic process, for any measurable function $f: E^{\mathbb{Z}} \longrightarrow \mathbb{R}$ such that $\mathbb{E}(|f(Y)|) < +\infty$ we have:

$$\frac{1}{n} \sum_{k=1}^{n} f \circ \tau^{k} \longrightarrow \mathbb{E} (f(Y)) \mathbb{P}_{Y} - a.s.$$

In particular, for any function $q: E \longrightarrow \mathbb{R}$ such that $\mathbb{E}(|q(Y_0)|) < +\infty$:

$$\frac{1}{n} \sum_{k=1}^{n} g(Y_k) \longrightarrow \mathbb{E}(g(Y_0)) \ a.s$$

Back to the model

ome properties about Markov Chains

Some properties about ergodicity

Back to the model

Definition

Definition

Abundance Data

Let K be a transition kernel on a measurable space (E, \mathcal{E}) .

Definition

Let K be a transition kernel on a measurable space (E,\mathcal{E}) . A probability π on E is said to be K-**invariant** if:

Back to the model

Some properties about Markov Chains

Definition

Abundance Data

Let K be a transition kernel on a measurable space (E,\mathcal{E}) . A probability π on E is said to be K-**invariant** if:

$$\pi \cdot K = \pi$$

Some properties about Markov Chains

Definition

Let K be a transition kernel on a measurable space (E, \mathcal{E}) . A probability π on E is said to be K-**invariant** if:

$$\pi \cdot K = \pi$$

where:

$$\pi \cdot K(A) = \int K(y, A)\pi(\mathrm{d}y)$$

Back to the model

Theorem

Theorem

Abundance Data

If a transition kernel K admits a unique invariant measure π , then there exists a unique strongly stationary Markov chain $\left(Y^{(t)}\right)_t$ with transition kernel K, and it is ergodic.

Outlines

Abundance Data

- I Abundance Data
- II General framework
- III Data transformation
- IV. The «Stay in the simplex approach»
 - Some properties about Markov Chains
 - Some properties about ergodicity
 - Back to the model

Back to the model

Abundance Data

We thus decide to model our abundance times series $(Y^{(t)})_{t\in\mathbb{Z}}$ as a Markov chain with Dirichlet transition kernel K with mean μ and unknown dispersion parameter ϕ with:

$$\mu_i = \frac{\exp(\beta^{(i)} \cdot y)}{1 + \sum_{i=1}^{d-1} \exp(\beta^{(i)} \cdot y)}.$$

Some properties about Markov Chains

Some properties about ergodicity

Back to the model

It can be shown that our kernel K satisfies the Doeblin's condition:

Some properties about Markov Chains

It can be shown that our kernel K satisfies the Doeblin's condition:

Definition

It can be shown that our kernel K satisfies the Doeblin's condition:

Definition

A transition kernel K defined on $E \times \mathcal{E}$ satisfies the **Doeblin's** condition if there exists a constant $\eta > 0$ and a probability measure λ on E such that:

$$\forall A \in \mathcal{E}, \ \forall y \in E, \ K(y, A) \geqslant \eta \cdot \lambda(A).$$

Some properties about Markov Chains

some properties about ergodicity

Back to the model

The following proposition is then crucial:

Abundance Data

The following proposition is then crucial:

Proposition

Abundance Data

The following proposition is then crucial:

Proposition

If K satisfies the Doeblin's condition, then it admits a unique invariant probability measure π .

The following proposition is then crucial:

Proposition

If K satisfies the Doeblin's condition, then it admits a unique invariant probability measure π .

Corollary

The following proposition is then crucial:

Proposition

If K satisfies the Doeblin's condition, then it admits a unique invariant probability measure π .

Corollary

There exists a unique strongly stationary Markov chain $(Y^{(t)})_t$ with transition kernel K, and it is ergodic.

Back to the model

The model parameters ϕ and $\beta^{(1)}, \dots, \beta^{(d-1)}$ can be estimated by the maximum of conditional likelihood,

Back to the model

Some properties about ergodicity

The model parameters ϕ and $\beta^{(1)}, \ldots, \beta^{(d-1)}$ can be estimated by the maximum of conditional likelihood, and ergodicity is an essential point here, because it ensures the strong consistency of these estimates, as well as their asymptotic normality.

os aboat maner chame

some properties about ergodicity

Back to the model

Example Scandinavian Birds

Abundance Data

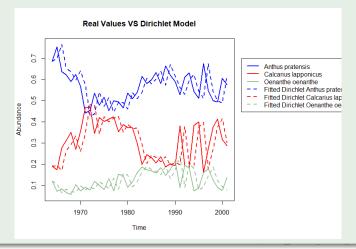
Example Scandinavian Birds

If we try to apply our model to the Scandinavian Birds data, we obtain the following results:

Example

Abundance Data

We present below the fitted values of abundance according to our model.



Back to the model

Example

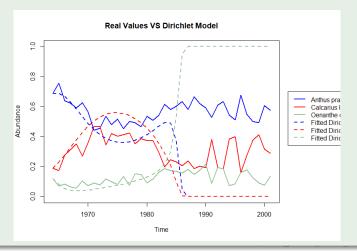
Some properties about Markov Chains

We present now the true prediction, i.e. we only rely on the first true abundance.

Example

Abundance Data

We present now the true prediction, i.e. we only rely on the first true abundance.



Abundance Data

Some properties about ergodicity

One final question of interest is the interpretation of the parameters $\beta^{(i)}$.

Back to the model

One final question of interest is the interpretation of the parameters $\beta^{(i)}$.

```
Remark
```

Back to the model

One final question of interest is the interpretation of the parameters $\beta^{(i)}$.

Remark

Take again our Scandinavian birds.

One final question of interest is the interpretation of the parameters $\beta^{(i)}$.

Remark

Abundance Data

Take again our Scandinavian birds.

Assume that between t and t+1, the abundance is evolving according to the following equation:

One final question of interest is the interpretation of the parameters $\beta^{(i)}$.

Remark

Abundance Data

Take again our Scandinavian birds.

Assume that between t and t+1, the abundance is evolving according to the following equation:

$$y^{(t+1)} = y^{(t)} + (c, -c, 0).$$

One final question of interest is the interpretation of the parameters $\beta^{(i)}$.

Remark

Some properties about Markov Chains

Abundance Data

Take again our Scandinavian birds.

Assume that between t and t+1, the abundance is evolving according to the following equation:

$$y^{(t+1)} = y^{(t)} + (c, -c, 0).$$

Consider the **power balance** between the two species defined by:

$$\frac{\mu_{1,t}}{\mu_{2,t}}.$$

Some properties about Markov Chains

Remark

Abundance Data

This balance evolves according to:

$$\frac{\frac{\mu_{1,t+1}}{\mu_{2,t+1}}}{\frac{\mu_{1,t}}{\mu_{2,t}}} =$$

Remark

Abundance Data

This balance evolves according to:

$$\frac{\frac{\mu_{1,t+1}}{\mu_{2,t+1}}}{\frac{\mu_{1,t}}{\mu_{2,t}}} = \exp\left(c \cdot (\beta_1^{(1)} + \beta_2^{(2)} - \beta_2^{(1)} - \beta_1^{(2)})\right).$$