Introduction to Deep Learning

J. Rynkiewicz

Introduction

Text formatting

The architecture

Attention Mechanism

Estimation of the transformer's parameters

Transfert learning

Introduction to Deep Learning

The transformers (freely inspired by http://jalammar.github.io/illustrated-transformer/)

J. Rynkiewicz

Université Paris 1 This work is made available under the terms of the Creative Commons Attribution-Share Alike 4.0 International License https://creativecommons.org/licenses/by-sa/4.0/

2022

The transformers

Introduction to Deep Learning

J. Rynkiewicz

Introduction

- Text formatting
- The architecture
- Attention Mechanism
- Estimation of the transformer's parameters
- Transfert learning

Transformer neural networks aim to predict a sequence of variable length according to another sequence of variable length. The principle is to take into account the context of the observations to predict (concept of attention) :

- Let us write :
 - (X_1, \dots, X_{T_X}) , the explanatory sequence.
 - (Y_1, \dots, Y_{T_Y}) the sequence to be predicted. Note that T_Y is also to be predicted.
 - \bullet the model's parameter vector.
- This formalism is suitable for chatbots or machine translation systems.
- In general, the architecture of this neural network is composed of an "encoder" and a "decoder" :

Tokenizer

Introduction to Deep Learning

- J. Rynkiewicz
- Introduction
- Text formatting
- The architecture
- Attention Mechanism
- Estimation of the transformer's parameters
- Transfert learning

- To tokenize a text consists in breaking it down into words or sub-words. They are then encoded in numbers (ids).
- The three most commonly used techniques are : Byte-Pair Encoding (BPE), WordPiece and SentencePiece.
- Splitting a text only in characters does not allow to obtain results close to the state of the art.
- But splitting the text according to the spaces is not satisfactory. It is necessary to differentiate the punctuation and to make possible the construction of new words.
- So we mix the coding of words and characters : sub-words.
- The idea of the sub-words is to keep the most used words whole, but to cut out the rare words or words transformed by the grammar (adverb etc...)
- Subword tokenization keeps the vocabulary size reasonable (typically 50000 tokens).
- The best sets of sub-words are built by keeping the most frequent sub-words (BPE) or those that maximize the likelihood of the text (WordPiece).
- SentencePiece tokenizes the texts by considering spaces as characters, then uses BPE or Wordpiece.

Encoder, decoder

Introduction to Deep Learning

J. Rynkiewicz

Introduction

Text formatting

The architecture

Attention Mechanism

Estimation of the transformer's parameters

Transfert learning

The encoder is a stack of *N* small encoders, the decoder a stack of *N* small decoders. In the original article N = 6.

イロト イポト イヨト イヨト

э

Small encoder

Introduction to Deep Learning

- J. Rynkiewicz
- Introduction
- Text formatting
- The architecture
- Attention Mechanism
- Estimation of the transformer's parameters
- Transfert learning

The small encoders have the same architecture (but they don't share their parameters).

- The input of the small encoder first goes through a Self-attention layer (described later).
- The output of the small encoder passes, before, through a feed-forward network whose architecture is identical for all encoders.

Small decoder

Introduction to Deep Learning

J. Rynkiewicz

Introduction

Text formatting

The architecture

Attention Mechanism

Estimation of the transformer's parameters

Transfert learning

The small decoders all have the same architecture (but they don't share their parameters).

- The input of the small decoder first goes through a layer of Self-attention (described later).
- There is an intermediate layer to focus on the input sequence and its transformation by the encoder.
- The output of the small encoder passes, before, through a feed-forward network whose architecture is identical for all decoders.

< ロ > < 同 > < 回 > < 回 > .

э

Word representation

Introduction to Deep Learning

- J. Rynkiewicz
- Introduction
- Text formatting

The architecture

- Attention Mechanism
- Estimation of the transformer's parameters
- Transfert learning

■ We start by embedding the words in a continuous space (ℝ⁵¹² in the original article).

- For the illustration, the embedding is in \mathbb{R}^4 .
- The embedding takes place only for the input of the first small encoder.
- All other small encoders receive the output of the previous small encoder (of the same size as the embedding).
- After , the vectors pass through the two layers of the first small encoder.

Propagation through the first small encoder

- J. Rynkiewicz
- Introduction
- Text formatting
- The architecture
- Attention Mechanism
- Estimation of th transformer's parameters
- Transfert learning

- The small encoder receives a list of vectors and returns a list of vectors of the same size.
- The vectors first pass through the Self-attention layer, then through the Feed-forward networks.

Introduction to Deep Learning

- J. Rynkiewicz
- Introduction
- Text formatting
- The architecture
- Attention Mechanism
- Estimation of the transformer's parameters
- **Transfert learning**

- Attention allows us to take into account the context of a word.
- To translate the sentence "The sheep did not cross the street because it was too tired"
- What does it refer to "it" in the texte "the sheep" or the "street"?
- This is an easy question for a human being, but difficult for a machine.
- The machine must therefore estimate whether the word "it" is more related to the word "sheep" or the word "street".
- The layer of "Self-attention" of transformers proposes a method to allow this estimation.

< ロ > < 同 > < 回 > < 回 > .

э

Detail of the "Self-attention" layer (1)

Introduction to Deep Learning

- J. Rynkiewicz
- Introduction
- Text formatting
- The architecture

Attention Mechanism

- Estimation of the transformer's parameters
- Transfert learning

- We start by defining three vectors : The query vector, the key vector and the value vector.
- These vectors are created by multiplying the "Embedding" by a weight matrix (of dimension 64x512 in the original article).

Detail of the "Self-attention" layer (2)

Introduction to Deep Learning

- J. Rynkiewicz
- Introduction
- Text formatting
- The architecture

Attention Mechanism

- Estimation of the transformer's parameters
- Transfert learning

- The embedding is transformed into a query, a key and a value and then each value is weighted by a softmax of the score induced by all keys.
- The weighted sum of the values is the "z" output of the attention layer.

Matrix computation for attention (1)

Introduction to Deep Learning

- J. Rynkiewicz
- Introduction
- Text formatting
- The architecture

Attention Mechanism

Estimation of the transformer's parameters

Transfert learning

The matrix form allows to parallelize the calculations.

Matrix computation for attention (2)

Introduction to Deep Learning

- J. Rynkiewicz
- Introduction
- Text formatting
- The architecture

Attention Mechanism

- Estimation of the transformer's parameters
- Transfert learning

The detailed computation of attention can be summarized by the following matrix equation :

"Multi-headed" attention layer

Introduction to Deep Learning

- J. Rynkiewicz
- Introduction
- Text formatting
- The architecture

Attention Mechanism

Estimation of the transformer's parameters

Transfert learning

- In the original article, there are several layers of attention in parallel.
- This allows the model to have a larger context representation space.

Computations of the "Multi-headed" attention layer

Introduction to Deep Learning

- J. Rynkiewicz
- Introduction
- Text formatting
- The architecture

Attention Mechanism

- Estimation of the transformer's parameters
- Transfert learning

- Each layer of attention has different weights.
- In the original paper, the authors compute 8 matrices Z.

Final attention computation

Introduction to Deep Learning

- J. Rynkiewicz
- Introduction
- Text formatting
- The architecture

Attention Mechanism

- Estimation of the transformer's parameters
- Transfert learning

- To obtain the final attention, we concatenate the outputs of the attention layers.
- Then, we multiply this vector by a weight matrix *W* which will be estimated.

To summarize the multiheaded attention layer

Introduction to Deep Learning

- J. Rynkiewicz
- Introduction
- Text formatting
- The architecture

Attention Mechanism

- Estimation of the transformer's parameters
- Transfert learning

The final attention vector Z will be obtained by the computations of the previous slides.

Encoding of the position to represent the order

- J. Rynkiewicz
- Introduction
- Text formatting
- The architecture
- Attention Mechanism
- Estimation of the transformer's parameters
- Transfert learning

- We want to be able to take into account the order of the words in the sentence.
- For this we will embed a periodic signal (a cosine) in a space of the same size as the one where we plunged the words.
- Then we will add the two embeddings.

Residual connections

- J. Rynkiewicz
- Introduction
- Text formatting
- The architecture
- Attention Mechanism
- Estimation of the transformer's parameters
- Transfert learning

- Each sub-layer has a residual connection (copy of the input).
- This improves the transmission of information and the computation of the gradient.

Link between encoder and decoder

- J. Rynkiewicz
- Introduction
- Text formatting
- The architecture
- Attention Mechanism
- Estimation of the transformer's parameters
- Transfert learning

- We represent here an encoder made of two small encoders, idem for the decoder.
- The decoder architecture has an additional layer of attention to account for the encoder output.

Estimation of transformer parameters

Introduction to Deep Learning

- J. Rynkiewicz
- Introduction
- Text formatting
- The architecture
- Attention Mechanism
- Estimation of the transformer's parameters
- Transfert learning

- The decoder uses the output but also the final "keys" and "values" vectors of the encoder to compute the conditional probabilities of the ouput's words.
- It will predict the conditional probability of the target words one after the other according to the encoder outputs and the previous target words.
- To do this, it hides the target words that follow the word to be predicted by assigning a zero probability to the coordinates corresponding to them in its "value" vector.

J. Rynkiewicz

Introduction to Deep Learning

Introduction to Deep Learning

- J. Rynkiewicz
- Introduction
- Text formatting
- The architecture
- Attention Mechanism
- Estimation of the transformer's parameters
- **Transfert learning**

- The decoder starts with the encoder output as input. It then generates the most probable word (or punctuation mark) according to it (its weights).
- The decoder then uses the output of the encoder and the word it has just generated to generate the next word.
- The self attention encoder-decoder layer uses the final keys and values of the encoder in addition to the characters already generated by the decoder.
- The decoder stops generating words when it emits the special "end of sentence" character.
- Note that the size of the vocabulary is necessarily finite. In practice it is a few tens of thousands.
- The decoder can't invent new words, but it can sequence their characters.

Transfert learning for the NLP

Introduction to Deep Learning

- J. Rynkiewicz
- Introduction
- Text formatting
- The architecture
- Attention Mechanism
- Estimation of the transformer's parameters
- Transfert learning

- Since 2018 models have pre-trained weights on large database (books, wikipedia, etc...).
- We therefore use these pre-trained models and finely calibrate their weight for a specific task.
- The two best known (but rapidly changing) are BERT and the GPT models (OpenAI-GPT, GPT2 and GPT3).
- BERT takes into account the whole context (the past and future tense of the sentence), it is especially useful for :
 - Analysis of the feeling (positive or negative sentences).
 - More generally, sentence classification (spam, non-spam etc...)
 - Question/answer.
- GPT has been trained to predict the next word in a sentence. This model uses only the decoder of the transformer, it is especially useful for :
 - Chatbot.
 - Text generation in general.

Text generation

Introduction to Deep Learning

- J. Rynkiewicz
- Introduction
- Text formatting
- The architecture
- Attention Mechanism
- Estimation of the transformer's parameters
- Transfert learning

GPT2 (now GPT3) has been trained to predict the next word in a sentence. It is the basic model for generating text. However, it only computes the probability law of the next sub-word, a method is needed to draw it randomly among all sub-words. The main methods are :

- Greedy search : We simply choose the most likely sub-word. This tends to create repetitive sequences.
- Beam search : We compute the probabilities of the sequences of words of length NB, and we choose the most probable sequence of words. NB is a hyperparameter to set. This method always tends to create repetitions and natural language seems more random.
- Top K sampling : We draw randomly among the K most probable sub-words (by renormalizing the probability law on these K sub-words). However, the K hyperparameter may not be adapted to all probability laws.
- Top P sampling : We choose K such that the sum of the probabilities of K sub-words is equal to at least P.

< ロ > < 同 > < 回 > < 回 > .

■ In practice, the two previous methods are mixed with a maximum K.