J. Rynkiewicz

Example of CIFAR10

The generalized linear model The one hidden layer ML

Convolutional Networks

Introduction to Deep Learning Convolutional networks

J. Rynkiewicz

Université Paris 1 This work is made available under the terms of the Creative Commons Attribution-Share Alike 4.0 International License https://creativecommons.org/licenses/by-sa/4.0/

2022

イロト イポト イヨト イヨト

Supervised classification : example of CIFAR10

Introduction to Deep Learning

J. Rynkiewicz

Example of CIFAR10

The generalized linear model The one hidden layer MLI Deep neural network

Convolutional Networks We want to predict a class (or category) *Y* according to a variable *X* : Y = f(X). *Y* has value in *E*, a finite set of cardinal *K* and *X* has value in \mathbb{R}^d . To illustrate this problem we will consider the image set CIFAR10, where *E* is a set of ten categories :

- 1 Planes
- 2 Cars
- 3 Birds
- 4 Cats
- 5 Deers
- 6 Dogs
- 7 Frogs
- 8 Horses
- 9 Boats
- 10 Trucks

X is a 32 \times 32 image on 3 color channels (RGB), so $d \simeq$ 3000.

J. Rynkiewicz

Example of CIFAR10

- The generalized linear model The one hidden layer MLP Deep neural network
- Convolutional Networks

- We want to estimate f_{θ} using observations $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \dots, \begin{pmatrix} x_n \\ y_n \end{pmatrix}$, (learning sample).
- We want this estimation to be accurate on new observations (which are not in the training set). This is the "generalization" capacity of the model, it is estimated on a test set : $\left(\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix}, \cdots, \begin{pmatrix} x_{n+T} \\ y_{n+T} \end{pmatrix} \right)$.

In the CIFAR10 example, n = 50000 et T = 10000. If we note $f_{\hat{\theta}}$ the estimate of the classification function a measure of the performance could be :

- **1** $\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{y_i\}}(f_{\hat{\theta}}(x_i))$ (correct classification rate for the learning set)
- **1** $\frac{1}{T} \sum_{i=1}^{T} \mathbf{1}_{\{y_{n+i}\}}((f_{\hat{\theta}}x_{n+i}))$ (correct classification rate for the test set)

Estimation (learning) of a model (2)

Introduction to Deep Learning

J. Rynkiewicz

Example of CIFAR10

- The generalized linear model The one hidden layer MLP
- Convolutional Networks

- The correct classification rate is not easy to manipulate directly for learning.
- Instead, we use the conditional likelihood of the observations to estimate f_{θ} .
- We note $g_{\theta}(k, x_i)$, the conditional probability of Y = k, if we observe x_i : $g_{\theta}(k, x_i) = P_{\theta}(Y_i = k | X_i = x_i)$.
- The conditional log-likelihood is written :

$$\ln \left(L_{\theta} \left(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \cdots, \begin{pmatrix} x_n \\ y_n \end{pmatrix} \right) \right) = \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbf{1}_{\{k\}}(y_i) \ln (g_{\theta}(k, x_i)).$$

We minimize the opposite of the conditional log-likelihood using a gradient descent.

The generalized linear model

Introduction to Deep Learning

J. Rynkiewicz

Example of CIFAR10

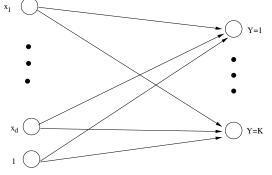
The generalized linear model

The one hidden layer MLP Deep neural network

Convolutional Networks The simplest model for the g function is the generalized linear model :

$$P(Y = k | X = x_i) = g_{\theta}(k, x_i) = \frac{\exp\left(\alpha_k + \beta_k^T x_i\right)}{\sum_{l=1}^{K} \exp\left(\alpha_l + \beta_l^T x_i\right)}$$

with $\theta = (\alpha_1, \beta_1, \cdots, \alpha_K, \cdots, \beta_K)$. We can schematize this model by :



<ロ> <同> <同> < 同> < 同> 、

The one hidden layer MLP

Introduction to Deep Learning

J. Rynkiewicz

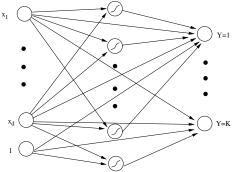
Example of CIFAR10 The generalized linear model

The one hidden layer MLP

Convolutional Networks We can add non-linearities in the *g* function :

$$P(Y = k | X = x_i) = g_{\theta}(k, x_i) = \frac{\exp\left(F_{\theta_k}(x_i)\right)}{\sum_{l=1}^{K} \exp\left(F_{\theta_l}(x_l)\right)}$$

with $F_{\theta_k}(x) = \alpha_k + \beta_k^T x + \sum_{h=1}^H a_h \sigma(b_k + W_k^T x)$ a perceptron function with a hidden layer and a skip layer. We can schematize this model by :



Application of these two models to CIFAR10

Introduction to Deep Learning

- J. Rynkiewicz
- Example of CIFAR10 The generalized linear model The one hidden layer MLP
- Deep neural network

Convolutiona Networks We estimate these models on the CIFAR10 database, thanks to the R library "nnet". For both models, the conditional maximum likelihood estimator is computed thanks to a gradient batch algorithm (BFGS).

The generalized linear model :

$$\hat{\theta} = \arg\min_{\theta} - \ln\left(L_{\theta}\left(\left(\begin{array}{c} x_{1} \\ y_{1} \end{array}\right), \cdots, \left(\begin{array}{c} x_{n} \\ y_{n} \end{array}\right)\right)\right).$$

The number of parameters is about 30000, after several days of computation we obtain :

The MLP has a hidden layer with a skip layer and ten hidden units. The conditional log-likelihood is penalized by the squared norm of the parameter vector to limit a bit the possible overfitting.

$$\hat{\theta} = \arg\min_{\theta} - \ln\left(L_{\theta}\left(\left(\begin{array}{c} x_{1} \\ y_{1} \end{array}\right), \cdots, \left(\begin{array}{c} x_{n} \\ y_{n} \end{array}\right)\right)\right) + \mu \|\theta\|^{2}, \text{ où } \mu = 10^{-9}.$$

< ロ > < 同 > < 回 > < 回 > .

The number of parameters is about 60000, after more than a week of calculation with the ${\sf BFGS}$ we obtain :

Application of these two models to CIFAR10

Introduction to Deep Learning

- J. Rynkiewicz
- Example of CIFAR10 The generalized linear model
- The one hidden layer MLP

Convolutiona Networks We estimate these models on the CIFAR10 database, thanks to the R library "nnet". For both models, the conditional maximum likelihood estimator is computed thanks to a gradient batch algorithm (BFGS).

The generalized linear model :

$$\hat{\theta} = \arg\min_{\theta} - \ln \left(L_{\theta} \left(\left(\begin{array}{c} x_1 \\ y_1 \end{array} \right), \cdots, \left(\begin{array}{c} x_n \\ y_n \end{array} \right) \right) \right).$$

The number of parameters is about 30000, after several days of computation we obtain :

- Correct classification rate for the learning set : 54.19%.
- Correct classification rate for the test set : 34.30%.
- The MLP has a hidden layer with a skip layer and ten hidden units. The conditional log-likelihood is penalized by the squared norm of the parameter vector to limit a bit the possible overfitting.

$$\hat{\theta} = \arg\min_{\theta} - \ln\left(L_{\theta}\left(\left(\begin{array}{c} x_{1} \\ y_{1} \end{array}\right), \cdots, \left(\begin{array}{c} x_{n} \\ y_{n} \end{array}\right)\right)\right) + \mu \|\theta\|^{2}, \text{ où } \mu = 10^{-9}.$$

< ロ > < 同 > < 回 > < 回 > .

The number of parameters is about 60000, after more than a week of calculation with the ${\sf BFGS}$ we obtain :

Application of these two models to CIFAR10

Introduction to Deep Learning

- J. Rynkiewicz
- Example of CIFAR10 The generalized linear model
- The one hidden layer MLP

Convolutiona Networks We estimate these models on the CIFAR10 database, thanks to the R library "nnet". For both models, the conditional maximum likelihood estimator is computed thanks to a gradient batch algorithm (BFGS).

The generalized linear model :

$$\hat{\theta} = \arg\min_{\theta} - \ln \left(L_{\theta} \left(\left(\begin{array}{c} x_1 \\ y_1 \end{array} \right), \cdots, \left(\begin{array}{c} x_n \\ y_n \end{array} \right) \right) \right).$$

The number of parameters is about 30000, after several days of computation we obtain :

- Correct classification rate for the learning set : 54.19%.
- Correct classification rate for the test set : 34.30%.
- The MLP has a hidden layer with a skip layer and ten hidden units. The conditional log-likelihood is penalized by the squared norm of the parameter vector to limit a bit the possible overfitting.

$$\hat{\theta} = \arg\min_{\theta} - \ln\left(L_{\theta}\left(\left(\begin{array}{c} x_{1} \\ y_{1} \end{array}\right), \cdots, \left(\begin{array}{c} x_{n} \\ y_{n} \end{array}\right)\right)\right) + \mu \|\theta\|^{2}, \text{ où } \mu = 10^{-9}.$$

< ロ > < 同 > < 回 > < 回 > .

The number of parameters is about 60000, after more than a week of calculation with the ${\sf BFGS}$ we obtain :

- Correct classification rate for the learning set : 58.80%.
- Correct classification rate for the test set : 32.47%.

- J. Rynkiewicz
- Example of CIFAR10
- The generalized linear model
- The one hidden layer MLP
- Deep neural network
- Convolutiona Networks

- The network learned using the stochastic gradient.
- As the updates of θ are not done after the passage on all the data, it is easy to transform the data in a random way to enrich the training set. These transformations are :
 - Reversal of the left and right of the image ("h-flip").
 - Small random cropping of the image ("Random-crop").
- The conditional log-likelihood is penalized by $10^{-5} \times ||\theta||^2$.
- We split the learning set : 40000 examples for training and 10000 examples for the validation.
 - After each run on the training set, the average classification error on the validation base is evaluated.
 - In the end, the model with the best validation error will be chosen (hold-out method).

< ロ > < 同 > < 回 > < 回 > .

After the training (about 1h30 with a graphic card) we obtain the following results :

- J. Rynkiewicz
- Example of CIFAR10
- The generalized linear model
- The one hidden layer MLP
- Deep neural network
- Convolutiona Networks

- The network learned using the stochastic gradient.
- As the updates of θ are not done after the passage on all the data, it is easy to transform the data in a random way to enrich the training set. These transformations are :
 - Reversal of the left and right of the image ("h-flip").
 - Small random cropping of the image ("Random-crop").
- The conditional log-likelihood is penalized by $10^{-5} \times ||\theta||^2$.
- We split the learning set : 40000 examples for training and 10000 examples for the validation.
 - After each run on the training set, the average classification error on the validation base is evaluated.
 - In the end, the model with the best validation error will be chosen (hold-out method).

- After the training (about 1h30 with a graphic card) we obtain the following results :
 - Correct classification rate for the learning set : 96.93%

- J. Rynkiewicz
- Example of CIFAR10
- The generalized linear model
- The one hidden layer MLP
- Deep neural network
- Convolutiona Networks

- The network learned using the stochastic gradient.
- As the updates of θ are not done after the passage on all the data, it is easy to transform the data in a random way to enrich the training set. These transformations are :
 - Reversal of the left and right of the image ("h-flip").
 - Small random cropping of the image ("Random-crop").
- The conditional log-likelihood is penalized by $10^{-5} \times ||\theta||^2$.
- We split the learning set : 40000 examples for training and 10000 examples for the validation.
 - After each run on the training set, the average classification error on the validation base is evaluated.
 - In the end, the model with the best validation error will be chosen (hold-out method).

- After the training (about 1h30 with a graphic card) we obtain the following results :
 - Correct classification rate for the learning set : 96.93%
 - Correct classification rate for the validation set : 95.44%

- J. Rynkiewicz
- Example of CIFAR10
- The generalized linear model
- The one hidden layer MLP
- Deep neural network
- Convolutiona Networks

- The network learned using the stochastic gradient.
- As the updates of θ are not done after the passage on all the data, it is easy to transform the data in a random way to enrich the training set. These transformations are :
 - Reversal of the left and right of the image ("h-flip").
 - Small random cropping of the image ("Random-crop").
- The conditional log-likelihood is penalized by $10^{-5} \times ||\theta||^2$.
- We split the learning set : 40000 examples for training and 10000 examples for the validation.
 - After each run on the training set, the average classification error on the validation base is evaluated.
 - In the end, the model with the best validation error will be chosen (hold-out method).

- After the training (about 1h30 with a graphic card) we obtain the following results :
 - Correct classification rate for the learning set : 96.93%
 - Correct classification rate for the validation set : 95.44%
 - Correct classification rate for the test set : 92.26%

Convolutional Networks

Introduction to Deep Learning

J. Rynkiewicz

Example of CIFAR10

The generalized linear model The one hidden layer MLI Deep neural network

Convolutional Networks

- These impressive results, compared to the classical models of the 1990s, are obtained using a convolutional network.
- The network used in this example is called a VGG-16.
- This network links convolutional layers and max-pooling functions.
- It ends with a layer without constraint (dense layer).
- The original network was used on much more detailed images, it has been adapted to CIFAR10 images.
- There are even better networks (such as the Resnet) but the VGG is particularly easy to study.

Convolutional layer

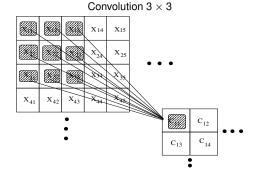
Introduction to Deep Learning

J. Rynkiewicz

Example of CIFAR10 The generalized linear

The one hidden layer MLP

Convolutional Networks A convolutional layer means introducing equality constraints between many weights :



• $C_{11} = \sum_{i=1}^{3} \sum_{j=1}^{3} W_{ij} X_{i,j}$

<ロ> <同> <同> < 同> < 同> 、

Convolutional layer

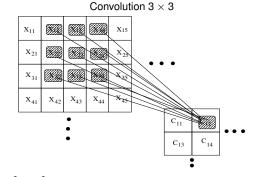
Introduction to Deep Learning

J. Rynkiewicz

Example of CIFAR10 The generalized linear model The one hidden layer ML

Deep neural network

Convolutional Networks A convolutional layer means introducing equality constraints between many weights :



•
$$C_{11} = \sum_{i=1}^{3} \sum_{j=1}^{3} W_{ij} X_{i,j}$$

• $C_{12} = \sum_{i=1}^{3} \sum_{j=1}^{3} W_{ij} X_{i,j+1}$

J. Rynkiewicz

Example of CIFAR10

The generalized linear model The one hidden layer MLI Deep neural network

Convolutional Networks

- The convolutional layers are grouped in parallel channels.
- For the *n*-th layer, there are C(n) parallel channels.
- The general equations for the C_{ijk}(n) neuron of layer n and channel k will therefore be :

$$C_{ijk}(n) = \sum_{k=1}^{C(n-1)} \sum_{i=1}^{3} \sum_{j=1}^{3} W_{ijk} C_{i+i',j+j',k}(n-1)$$

- For VGGs, the number of channels increases after each pass through the max-pooling function because it reduces the surface of these layers.
- In the end, there are millions of weights in a VGG, but they are extremely constrained in the convolutional layers.

Layer of "max-pooling"

Introduction to Deep Learning

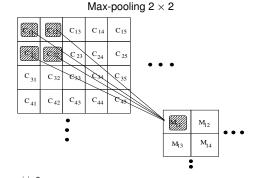
J. Rynkiewicz

Example of CIFAR10 The generalized linear model The one hidden layer ML

Convolutional

Networks

A max-pooling layer computes the maximum of several units on small areas :



$$\blacksquare M_{11} = \max_{i,j=1}^{i,j=2} C_{ij}$$

Layer of "max-pooling"

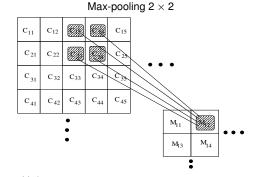
Introduction to Deep Learning

J. Rynkiewicz

Example of CIFAR1

The generalized linear model The one hidden layer ML Deep peural petwork

Convolutional Networks A max-pooling layer computes the maximum of several units on small areas :



$$M_{11} = \max_{i,j=1}^{i,j=2} C_{ij}$$
$$M_{12} = \max_{i,j=1}^{i,j=2} C_{i,j+2}$$

Layer of "max-pooling"

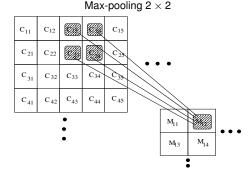
Introduction to Deep Learning

J. Rynkiewicz

Example of CIFAR10 The generalized linear model

The one hidden layer MLP

Convolutional Networks A max-pooling layer computes the maximum of several units on small areas :



$$\blacksquare M_{11} = \max_{i,j=1}^{i,j=2} C_{ij}$$

$$\blacksquare M_{12} = \max_{i,j=1}^{i,j=2} C_{i,j+2}$$

The output of such a layer will have a height and width divided by two !

VGG-16

Introduction to Deep Learning

J. Rynkiewicz

Example of CIFAR10

The generalized linear model The one hidden layer MLP Deep neural network

Convolutional Networks The "VGG-16" deep network links convolution layers 3×3 (followed by a non-linearity ReLU) : $\sigma(x) = \max(0, x)$) and layers of "max-pooling" 2×2 . In order not to reduce the size of the image layer by the convolutions we add a 0 frame around the input layer (padding). If we write :

- CV3 the convolution layers 3 × 3.
- ReLU, the application of the ReLU non-linearity on each of the units.
- MP2 the max-pooling layers 2 × 2.
- $NC \times W \times H$ the dimension of the layers (number of channels NC, width W, height H)
- LIN(NI, NO) a dense linear layer of dimensions NI for the inputs and NO for the output.

the architecture of a VGG-16 will be :

$$\begin{array}{l} (NC = 3, W = 32, H = 32) \stackrel{ReLU(CV3)}{\longrightarrow} (NC = 64, W = 32, H = 32) \stackrel{ReLU(CV3)}{\longrightarrow} \\ (NC = 64, W = 32, H = 32) \stackrel{MP2}{\longrightarrow} (NC = 64, W = 16, H = 16) \stackrel{ReLU(CV3)}{\longrightarrow} \\ (NC = 128, W = 16, H = 16) \stackrel{ReLU(CV3)}{\longrightarrow} (NC = 128, W = 16, H = 16) \stackrel{MP2}{\longrightarrow} \\ (NC = 128, W = 8, H = 8) \stackrel{ReLU(CV3)}{\longrightarrow} (NC = 256, W = 8, H = 8) \stackrel{ReLU(CV3)}{\longrightarrow} \\ (NC = 256, W = 8, H = 8) \stackrel{ReLU(CV3)}{\longrightarrow} (NC = 256, W = 8, H = 8) \stackrel{MP2}{\longrightarrow} \\ (NC = 256, W = 4, H = 4) \stackrel{ReLU(CV3)}{\longrightarrow} (NC = 512, W = 4, H = 4) \stackrel{MP2}{\longrightarrow} \\ (NC = 512, W = 4, H = 4) \stackrel{ReLU(CV3)}{\longrightarrow} (NC = 512, W = 4, H = 4) \stackrel{MP2}{\longrightarrow} \\ (NC = 512, W = 2, H = 2) \stackrel{MP2}{\longrightarrow} (NC = 512, W = 2, H = 2) \stackrel{MP2}{\longrightarrow} \\ (NC = 512, W = 2, H = 2) \stackrel{MP2}{\longrightarrow} (NC = 512, W = 1, H = 1) \stackrel{MP2}{\longrightarrow} \\ (NC = 512, W = 2, H = 2) \stackrel{MP2}{\longrightarrow} (NC = 512, W = 1, H = 1) \stackrel{LIN(512, 10)}{\longrightarrow} \\ (NC = 512, W = 2, H = 2) \stackrel{MP2}{\longrightarrow} (NC = 512, W = 1, H = 1) \stackrel{LIN(512, 10)}{\longrightarrow} \\ (NC = 512, W = 2, H = 2) \stackrel{MP2}{\longrightarrow} (NC = 512, W = 1, H = 1) \stackrel{LIN(512, 10)}{\longrightarrow} \\ (NC = 512, W = 2, H = 2) \stackrel{MP2}{\longrightarrow} (NC = 512, W = 1, H = 1) \stackrel{LIN(512, 10)}{\longrightarrow} \\ (NC = 512, W = 2, H = 2) \stackrel{MP2}{\longrightarrow} (NC = 512, W = 1, H = 1) \stackrel{LIN(512, 10)}{\longrightarrow} \\ (NC = 512, W = 2, H = 2) \stackrel{MP2}{\longrightarrow} \\ (NC = 512, W = 2, H = 2) \stackrel{MP2}{\longrightarrow} \\ (NC = 512, W = 2, H = 2) \stackrel{MP2}{\longrightarrow} \\ (NC = 512, W = 1, H = 1) \stackrel{LIN(512, 10)}{\longrightarrow} \\ (NC = 512, W = 1, H = 1) \stackrel{MP2}{\longrightarrow} \\ (NC = 512, W = 1, H = 1) \stackrel{$$

- J. Rynkiewicz
- Example of CIFAR10
- The generalized linear model The one hidden layer MLI Deep neural network

Convolutional Networks The update of the parameters is done by mini-batch of 128 observations. It is a variant of the stochastic gradient algorithm :

- $\theta_{n+1} = \theta_n \gamma \frac{1}{128} \sum_{i=1}^{128} \frac{\partial \ln(L_{\theta}(x_{t+i}, y_{t+i}))}{\partial \theta}$. During the algorithm, γ decreases from 0.1, to 0.01.
- To accelerate the descent of the gradient, a momentum of 0.9 (see the 2nd course).
- The conditional log-likelihood is penalized by $10^{-5} \times ||\theta||^2$.
- We select the model with the best validation error (hold-out method).
- We recall that the correct classification rate for the test set of this model is : 92.26%

J. Rynkiewicz

Example of CIFAR10

The generalized linear model The one hidden layer MLI Deep neural network

Convolutional Networks

- The main progress in the classification performance of convolutional networks is related to modifications in the architecture of these models.
- Although they differ in architecture, all these networks combine convolutional and pooling layers.
- One of the most famous is the Resnet, which introduces "skip layers" connections that allow for better gradient calculations.
- With the Resnet model, we can increase the number of hidden layers (up to 150 !).
- There are also models to reduce the number of parameters while keeping the performance as possible. This allows them to be used in "small" computers (smartphones).