
Introduction to Deep
Learning

J. Rynkiewicz

Introduction

The weight decay

The dropout

The mixup

The batch
normalization

Data augmentation

The hold-out

Introduction to Deep Learning
Regularization and model selection

J. Rynkiewicz

Université Paris 1
This work is made available under the terms of the Creative Commons Attribution-Share Alike 4.0 International License

https://creativecommons.org/licenses/by-sa/4.0/

2022

J. Rynkiewicz Introduction to Deep Learning

Introduction to Deep
Learning

J. Rynkiewicz

Introduction

The weight decay

The dropout

The mixup

The batch
normalization

Data augmentation

The hold-out

Regularization of neural networks (1)

Stochastic optimization algorithms work well in practice. They often
converge to a very good local minimum of the cost function.

As these models have many parameters, there are often more parameters
than observations, so we must be careful about overfitting.

Overfitting corresponds to a too close or exact fit to a particular data set.
The model learns "by heart" the training data and cannot generalize on
new data.
To avoid choosing the wrong model, we split the training set in two :

A majority of the data to estimate the model parameters (training set).
A minority of data to estimate the generalization of the model (validation set).
This method is called “hold-out”.

J. Rynkiewicz Introduction to Deep Learning

Introduction to Deep
Learning

J. Rynkiewicz

Introduction

The weight decay

The dropout

The mixup

The batch
normalization

Data augmentation

The hold-out

Regularization of neural networks (2)

Although the best model is chosen using a validation set, it is preferable to
control the modeling power of neural networks.
Currently, there are mainly three methods used in Deep Learning :

The weight-decay which penalizes the cost function according to the size
of the parameters. The advantage of this technique is to stabilize the
stochastic gradient optimization algorithm by preventing the weights from
becoming too large.

The drop out, not all weights are updated at each mini-batch. It is as if in
front of each hidden unit of a layer, there was a mask that lets the
information pass or not with a fixed probability p, but to be chosen.

The mixup, which consists in creating virtual observations that are a mix
of real observations.

Batch normalization has the reputation of regularizing the model but it is
not clear why. This technique was introduced to make gradient descent
more efficient.

This is not an exhaustive list !

None of these methods is exclusive, it is possible to use several at the same
time.

J. Rynkiewicz Introduction to Deep Learning

Introduction to Deep
Learning

J. Rynkiewicz

Introduction

The weight decay

The dropout

The mixup

The batch
normalization

Data augmentation

The hold-out

The weight decay

Let C(yt ,Fθ(xt)) be a cost function, for example C(yt ,Fθ(xt)) = (yt ,Fθ(xt))2,
and θ the weights vector of the net. Let B be the dimension of θ. The function to
minimize will be :

n∑
t=1

C(yt − Fθ(xt)) + λ

B∑
i=1

θ2
i

The optimal weights θ̂, for the penalized criterion, will check :

θ̂ = arg min
n∑

t=1

C(yt − Fθ(xt)) + λ
B∑

i=1

θ2
i

The choice of λ is somewhat arbitrary, but it is usually in the order of 10−5 or
10−6 for deep networks with several million parameters.

J. Rynkiewicz Introduction to Deep Learning

Introduction to Deep
Learning

J. Rynkiewicz

Introduction

The weight decay

The dropout

The mixup

The batch
normalization

Data augmentation

The hold-out

Back to white noise

Let’s go back to our sample ((xt (1), xt (2), yt)1≤t≤30, where
(X(1),X(2),Y) ∼ N (0, I3). We now penalize the MLP with the weight decay
method and a coefficient λ = 0.01.

library(nnet)
library(rgl)
set.seed(1)
x <- matrix(rnorm(60),30,2)
y <- matrix(rnorm(30),30,1)
res.mod <- nnet(x,y,size=10,maxit=1000,decay=0.01,linout=T)
x1p <- runif(10000,min=min(x[,1]),max=max(x[,1]))
x2p <- runif(10000,min=min(x[,2]),max=max(x[,2]))
matp <- cbind(x1p,x2p)
mod.pred <- predict(res.mod,matp)
plot3d(c(-2,-2,2,2),c(-2,2,-2,2),c(20,20,-20,-20),type="n",
axes=F,xlab="",ylab="",zlab="")
points3d(x1p,x2p,mod.pred,col="green")
spheres3d(x[,1],x[,2],y,radius=0.5,col="red")

J. Rynkiewicz Introduction to Deep Learning

Introduction to Deep
Learning

J. Rynkiewicz

Introduction

The weight decay

The dropout

The mixup

The batch
normalization

Data augmentation

The hold-out

The dropout

The dropout consists in putting a "random mask" in front of the neurons of
a layer.

In Deep Learning software, the user can add this mask in front of any
layer. Masks can be added layer by layer.

The user must also choose the probability p for which the mask is 1 and
does not inhibit the layer units. Often the default probability is p = 1

2 .

The more masks there are, the smaller p is, the more regularized the
network is. It will do less overfitting but it will have more difficulty to model
the right prediction function.

There is no real theoretical justification for this algorithm, but it works very
well in practice.

Reference : Srivastava et al., Dropout : A Simple Way to Prevent Neural
Networks from Overfitting, Journal of Machine Learning Research (2014).

J. Rynkiewicz Introduction to Deep Learning

Introduction to Deep
Learning

J. Rynkiewicz

Introduction

The weight decay

The dropout

The mixup

The batch
normalization

Data augmentation

The hold-out

Illustration of the dropout

x

x

1

1

d

Y=1

Y=K

0 ou 1

0 ou 1

0 ou 1

0 ou 1

J. Rynkiewicz Introduction to Deep Learning

Introduction to Deep
Learning

J. Rynkiewicz

Introduction

The weight decay

The dropout

The mixup

The batch
normalization

Data augmentation

The hold-out

The mixup

Mixup is about creating observations that mix real observations.

If we denote xi and xj the explanatory variables of examples i and j , and
yi and yj their associated labels. We create the virtual observations :

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ)yj

We thus introduce the information that the linear interpolation of the
explanatory variables must lead to the linear interpolation of the labels.

The mixup is very easy to program with Pytorch or tensorflow 2.4.

The mixing coefficient λ is drawn randomly according to a beta law whose
parameters α > 0 and β > 0 are often equal and between 0.1 and 0.2.

The beta law has density function :

f(α,β)(x) = xα−1(1−x)β−1∫ 1
0 uα−1(1−u)β−1du

1[0,1](x) :=

Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−11[0,1](x)

J. Rynkiewicz Introduction to Deep Learning

Introduction to Deep
Learning

J. Rynkiewicz

Introduction

The weight decay

The dropout

The mixup

The batch
normalization

Data augmentation

The hold-out

The batch normalization

Like dropout, batch normalization can be applied to each layer.

If we denote zt = (zt (1), · · · , zt (N)) the vector of values that enters a
layer and B the dimension of the minibatch, we compute :

m(k) = 1
B
∑B

t=1 zt (k)

σ(k) = 1
B
∑B

t=1(zt (k)−m(k))2

We center and normalize the data : z̃t (k) = zt (k)−m(k)
σ(k)

.

Since we cannot be sure that this normalization is beneficial, we introduce
new parameters (α(k), β(k)) which allow us to rectify the transformation
(which can even reverse it) : β(k)z̃t (k) + α(k).

(α(k), β(k)) are optimized like all the other parameters of the network by
gradient descent.

This algorithm was introduced to improve the optimization of the network
and it was found that it also limited overfitting ! We don’t really know why.

J. Rynkiewicz Introduction to Deep Learning

Introduction to Deep
Learning

J. Rynkiewicz

Introduction

The weight decay

The dropout

The mixup

The batch
normalization

Data augmentation

The hold-out

Data augmentation

In some cases, such as image recognition, one can easily create new
examples without changing the class of the image, increasing the number of
examples limits overlearning.
hflip : We reverse the left and the right.

RandomCrop : The image is cropped randomly.

J. Rynkiewicz Introduction to Deep Learning

Introduction to Deep
Learning

J. Rynkiewicz

Introduction

The weight decay

The dropout

The mixup

The batch
normalization

Data augmentation

The hold-out

The hold-out

During the training, the techniques presented are used for models
regularization :

weight decay
drop out
batch normalization
data augmentation
It is possible to use several of these methods at the same time !

All these techniques depend on hyperparameters, which must be set in a
rather arbitrary way.

We choose the best model thanks to its performances on a validation set :
The hold-out method.

The division of the data into training set and validation set is arbitrary and
depends on the number of available data.

Often 10 to 20 percent of the data is taken for the validation set.

J. Rynkiewicz Introduction to Deep Learning

Introduction to Deep
Learning

J. Rynkiewicz

Introduction

The weight decay

The dropout

The mixup

The batch
normalization

Data augmentation

The hold-out

Hold-out theory

It is questionable whether the model selected by the hold-out procedure is
a good model.

Statistical benchmarks provide an answer to this question.

This answer is expressed as an oracle inequality.

It is an inequality that increases the difference between the model chosen
by the procedure and the best possible choice if we had known about it
(the oracle).

We will show that, for classification, the hold-out procedure is almost
optimal.

If you have enough data, for example if you are in a big data context, the
hold-out is the procedure of choice to find a good model.

J. Rynkiewicz Introduction to Deep Learning

Introduction to Deep
Learning

J. Rynkiewicz

Introduction

The weight decay

The dropout

The mixup

The batch
normalization

Data augmentation

The hold-out

The different errors

Let gθ be a classification function from Rd into {1, · · · ,K}.
We have an i.i.d. sample. ((X1,Y1), · · · , (Xn,Yn)) where all couples have
the same law µ as a generic couple (X ,Y).

The generalization error of the function gθ sera L(gθ) = Eµ(1gθ(X)6=Y),
where 1gθ(X) 6=Y is 1 if gθ(X) is not equal to Y and 0 otherwise.

The learning error of the gθ function will be

L̂n(gθ) =
1
n

n∑
i=1

1gθ(Xi) 6=Yi

If we assume that we have a validation set ((X1,Y1), · · · , (Xm,Ym))
independent of the training set ((X1,Y1), · · · , (Xn,Yn)), the validation
error will be :

L̂m(gθ) =
1
m

m∑
i=1

1gθ(Xi) 6=Yi

J. Rynkiewicz Introduction to Deep Learning

Introduction to Deep
Learning

J. Rynkiewicz

Introduction

The weight decay

The dropout

The mixup

The batch
normalization

Data augmentation

The hold-out

Bias-variance trade-off

We estimate the weights of the network by minimizing the opposite of the
log-likelihood, we obtain the network gθ̂n

.

ghatθn is implicitly a function of the training data ((X1,Y1), · · · , (Xn,Yn)).
We denote EL(ghatθn) the expectation of the learning error with respect to
the distribution of ((X1,Y1), · · · , (Xn,Yn)).

We note L∗ the optimal error of the oracle g∗, if the possible models can
be very complex then they can be very close to the oracle g∗ (the bias is
low).

If the possible models can be very complex, they are likely to have a high
overlearning on the learning base (the variance is large).

We look for the family of models that achieves the best bias-variance
compromise : it is rich enough to approximate g∗ and small enough not to
overfit.

This means finding the model that will minimize EL(gθ̂n
)− L∗.

J. Rynkiewicz Introduction to Deep Learning

Introduction to Deep
Learning

J. Rynkiewicz

Introduction

The weight decay

The dropout

The mixup

The batch
normalization

Data augmentation

The hold-out

Generalization bound

Let be a finite family {ghatθ1 , · · · , ghatθN } of functions estimated on the
training set. Let us denote

k̃ = arg min
k∈{1,··· ,N}

L
(

gθ̂k

)
et k̂ = arg min

k∈{1,··· ,N}
L̂m

(
gθ̂k

)
We will have

P
(

L
(

gθ̂k̂

)
− L

(
gθ̂k̃

)
> ε
)
≤ 2Ne−2mε2

.

We can also show the oracle inequality :

E
(

L
(

gθ̂k̂

)
− L(g∗)

)
≤ L

(
gθ̂k̃

)
− L(g∗) + 2

√
log N
2m

Thus, the error of the selected model is close to that of the oracle if there
is a function in the family {ghatθ1 , · · · , ghatθN } which has an error close to
the oracle.

J. Rynkiewicz Introduction to Deep Learning

Introduction to Deep
Learning

J. Rynkiewicz

Introduction

The weight decay

The dropout

The mixup

The batch
normalization

Data augmentation

The hold-out

An oracle inequality under noise condition

Théorème
Let
(

gθ̂k

)
1≤k≤N

be a finite family of classification functions estimated on the

training set. Let k̂ the index that minimizes the empirical risk on the validation
set :

k̂ = arg min
k∈{1,··· ,N}

L̂m(gθ̂k
) = arg min

k∈{1,··· ,N}

1
m

m∑
i=1

1g
θ̂k

(Xi) 6=Yi

Let be a function w(.) such that, for any classifier g,√
Var

[
1g 6=g∗

]
≤ w(L(g)− L(g∗)) and such that

w(x)
√

x
is non-increasing.

Let τ∗ be the smallest positive solution of w(ε) =
√

mε, if θ ∈]0; 1[, then :

E
(

L(gθ̂k̂
)− L(g∗)

)
≤ (1 + θ) infk∈{1,··· ,N}

[
EL(gθ̂k

)− L∗+(
8

3m + 4τ∗
θ

)
(log(N) + 1)

]
.

J. Rynkiewicz Introduction to Deep Learning

Introduction to Deep
Learning

J. Rynkiewicz

Introduction

The weight decay

The dropout

The mixup

The batch
normalization

Data augmentation

The hold-out

Mammem-Tsybakov condition

Let α ∈ [0, 1], the condition of Mammem Tsybakov can be written as
follows : ∃β > 0, ∀g ∈ {0, 1}X , E

(
1g(X) 6=g∗(X)

)
≤ β (L (g)− L (g∗))α.

Moreover, if η (X) = E (Y = 1|X), and s > 0 exists such that
|2η (X)− 1| > s, almost surely, then the case α = 1 is realized.

If such a condition is true with exponent α, then we can choose

w (r) =
(r

h

)α
2 , for a h positive and τ∗ =

(
1

mhα

)− 1
2−α .

The inequality of the previous theorem becomes :

E
(

L
(

g∗θk̂

)
− L (g∗)

)
≤

(1 + θ)

((
L
(

g∗θk̃

)
− L (g∗)

)
+

(
8

3m + 4

θ(mhα)
1

2−α

)
(log (N) + 1)

)

A fast convergence of speed 1
m is reached if α = 1.

J. Rynkiewicz Introduction to Deep Learning

	Introduction
	The weight decay
	The dropout
	The mixup
	The batch normalization
	Data augmentation
	The hold-out

