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The simple perceptron

Originating from the analogy with biology, the formal neuron was introduced by
McCullogh and Pitts in 1943. It is defined as follows :

Real inputs xi , i ∈ {1, · · · , d}
Weights Wi , i ∈ {0, · · · , d}

The weights W0 is related to a constant input, the opposite of W0 can be seen
as a threshold value, beyond which the neuron is activated.
The neuron performs the following two operations by computing :

1 Its potential : W0 +
∑d

i=1 Wi xi

2 Its activation, thanks to an activation function φ : φ
(

W0 +
∑d

i=1 Wi xi

)
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The formal neuron

The weights Wi represent the synaptic weights, T := W0 +
∑d

i=1 Wi xi is the
potential and FW (x) := φ (T ) the output of the axon. The activation functions
φ : R −→ R are generally non-linear, for example the sign function or the
family of sigmoid functions.
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φ (x) = 1 si x ≥ 0
φ (x) = −1 si x < 0
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+ r ; c, k > 0
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Linear classificiation

Let S+ and S− be two subsets of Rd . These two sets are linearly separable if
and only if, W = (W0, · · · ,Wd ) ∈ Rd+1 exists such that :

∀x ∈ S+ : W0 +
∑d

i=1 Wi xi > 0
∀x ∈ S− : W0 +

∑d
i=1 Wi xi < 0

A perceptron FW with sign function for activation function can separate these
two sets :

FW (x) = 1 si x ∈ S+

FW (x) = −1 si x ∈ S−

Learning of the perceptron

1 We initialize the weights randomly
2 At time t a vector x is presented, let ε > 0.

If FW (x) = 1 instead of −1 :

∀i ∈ {1, · · · , d} : Wi (t + 1) = Wi (t) + εxi

If FW (x) = 1 instead of −1 :

∀i ∈ {1, · · · , d} : Wi (t + 1) = Wi (t)− εxi

If FW (x) gives the right answer, the wheights are unchanged.

J. Rynkiewicz Introduction to Deep Learning
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Linear classificiation

Let S+ and S− be two subsets of Rd . These two sets are linearly separable if
and only if, W = (W0, · · · ,Wd ) ∈ Rd+1 exists such that :

∀x ∈ S+ : W0 +
∑d

i=1 Wi xi > 0
∀x ∈ S− : W0 +

∑d
i=1 Wi xi < 0

A perceptron FW with sign function for activation function can separate these
two sets :

FW (x) = 1 si x ∈ S+

FW (x) = −1 si x ∈ S−

Learning of the perceptron

1 We initialize the weights randomly
2 At time t a vector x is presented, let ε > 0.

If FW (x) = 1 instead of −1 :

∀i ∈ {1, · · · , d} : Wi (t + 1) = Wi (t) + εxi

If FW (x) = 1 instead of −1 :

∀i ∈ {1, · · · , d} : Wi (t + 1) = Wi (t)− εxi

If FW (x) gives the right answer, the wheights are unchanged.

The weight vector of the perceptron will converge after a finite number of
iterations.

J. Rynkiewicz Introduction to Deep Learning
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Linearly separable problem

The perceptron will find one of the lines that separates the two sets to be
classified.
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Limitation of the simple perceptron

The perceptron cannot solve non-linear problems :
Le problème XOR

o s

os
s

o 0

1
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Limitation of the simple perceptron

The perceptron cannot solve non-linear problems :
Le problème XOR

o s

os
s

o 0

1

Note : We can manage to separate this set linearly if we work in the
superset :{x , y , xy}

x + y − 0.5− 2xy > 0 si (x , y) ∈ {(0, 1), (1, 0)}
x + y − 0.5− 2xy < 0 si (x , y) ∈ {(0, 0), (1, 1)}
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The multilayer perceptron (MLP)

1 1

X

X1

2

W32

W22

W12

W31

W21

W11

W30
W20

W10

A0

A1

A2

A3 fθ (x1, x2) = a0
+a1φ (w10 + x1 × w11 + x2 × w21)
+a2φ (w20 + x1 × w21 + x2 × w22)
+a3φ (w30 + x1 × w31 + x2 × w32)

where φ is the activation function.
In the sequel, θ = (w10, · · · , aN )
will be the parameter vector of the
MLP.

Théorème
Let fθ be a multilayer perceptron with one hidden layer, where φ is a strictly
increasing bounded function. Let K be a compact subset of Rm.
Then, for all function f continuous with compact support (f ∈ C(K ) ),
f : Rm −→ Rs and for ε > 0, an MLP with N hidden units exists with parameter
vector θ, such that ∀ (x1, · · · , xm) ∈ Rm

‖f (x1, · · · , xm)− fθ (x1, · · · , xm)‖ < ε

J. Rynkiewicz Introduction to Deep Learning



Introduction to Deep
Learning

J. Rynkiewicz

Introduction
Linear model

The multilayer
perceptron
Estimation

The overfitting
Examples of overfitting

Next lesson

Estimation of MLP’s weights

We have a sequence of observations (xt , yt )1≤t≤n. xt are the explanatory
variables and yt the variables to be explained. Estimation amounts to
minimizing the empirical mean of a cost function in θ :
Cn(θ) = 1

n
∑n

t=1 e(fθ(xt ), yt ) := 1
n
∑n

t=1 et
Cost functions :

1 Régression
If yt ∈ R, et = e(fθ(xt ), yt ) = (fθ(xt )− yt ))2.
If yt ∈ Rs , et = e(fθ(xt ), yt ) = ‖fθ(xt )− yt )‖2, the Euclidean norm.

2 Classification

If yt ∈ (1, · · · ,K ), for K classes.
The MLP will have K outputs

(
f l
θ(xt )

)
1≤l≤K

. We will have :

Pθ(Yt = k |Xt = xt ) =
exp
(

f kθ (xt )
)

∑K
l=1 exp

(
f l
θ

(xt )
) and the conditional log-likelihood :

lθ(...) =
n∑

t=1

K∑
k=1

1k (yt ) log (Pθ(Yt = k |xt ))

So the “cross entropy” cost function (opposite of the log-likelihood) :

et = e(fθ(xt ), yt ) = −
∑K

k=1

[
1k (yt ) log

exp
(

f kθ (xt )
)

∑K
l=1 exp

(
f l
θ

(xt )
)
]

J. Rynkiewicz Introduction to Deep Learning
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Computation of the gradient

For fixed observations
((

x1
y1

)
, · · · ,

(
xn
yn

))
, we seek to minimize

the function θ 7→ Cn(θ) = 1
n
∑n

t=1 e(fθ(xt ), yt ), where θ ∈ Rd . We can
only approximate the solution numerically. For this purpose, we compute
the derivatives for t ∈ {1, · · · , n} of

(
∂e(fθ(xt ),yt )

∂θi

)
1≤i≤d

and we proceed

numerically.

To illustrate this computation, we will consider an elementary model with

xt =

(
x1t
x2t

)
et yt ∈ {0, 1} :

x1

1 1

X 2

P(Y=1)

P(Y=0)

J. Rynkiewicz Introduction to Deep Learning
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Elementary MLP Example

The Elementary MLP : x =

(
x1
x2

)
, yt ∈ {0, 1} and θ = (W 1

10, · · · ,W
2
22) :

e(fθ(x), y) = −1{0}(y) ln (p1θ(x1, x2))− 1{1}(y) ln (p2θ(x1, x2))

with

The first layer z1 =

(
x1
x2

)
.

The second layer z2 = φ2(W 1z1) =

(
tanh(w1

11x1 + w1
12x2 + w1

10)

tanh(w1
21x1 + w1

22x2 + w1
20)

)
The third layer z3 =

(
p1(θ)
p2(θ)

)
= φ3(W 2z2) =

exp
(

w2
11z2

1 +w2
12z2

2 +w2
10

)
exp(w2

11z2
1 +w2

12z2
2 +w2

10)+exp(w2
21z2

1 +w2
22z2

2 +w2
20)

exp
(

w2
21z2

1 +w2
22z2

2 +w2
20

)
exp(w2

11z2
1 +w2

12z2
2 +w2

10)+exp(w2
21z2

1 +w2
22z2

2 +w2
20)


The cost function e

((
p1
p2

)
, y
)

= −1{0}(y) ln(p1)− 1{1}(y) ln(p2)
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Computation of the derivative (1)

For all parameter θi ∈ {w1
10, · · · ,w

2
22}, we can use the computation

chain :

∂e(fθ(x),y)
∂θi

= ∂e(fθ(x),y)

∂z3
1

∂z3
1

∂z2
1

∂z2
1

∂θi
+ ∂e(fθ(x),y)

∂z3
1

∂z3
1

∂z2
2

∂z2
2

∂θi
+

∂e(fθ(x),y)

∂z3
2

∂z3
2

∂z2
1

∂z2
1

∂θi
+ ∂e(fθ(x),y)

∂z3
2

∂z3
2

∂z2
2

∂z2
2

∂θi

but this calculation is redundant, the colored quantities appear several
times.

We can still notice that, for the cross entropy, the derivative with respect to
the output of the neural network is easily obtained :

∂e(z, y)

∂z
= z − y ,

where, with a slight abuse of notation, z is the output vector of the network
after application of the softmax function and y is the class encoded on the
simplex (one-hot encoding).

J. Rynkiewicz Introduction to Deep Learning
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Computation of the derivative (2)

The back-propagation algorithm computes first and without redundancy
δL

i = ∂e(fθ(x),y)

∂zL
i

:

δL
i =

∂e(fθ(x), y)

∂zL
i

=
∑

j

∂e(fθ(x), y)

∂zL+1
j

∂zL+1
j

∂zL
i

=
∑

j

δL+1
j

∂zL+1
j

∂zL
i

Since zL+1 = φL+1(W LzL), with
φL+1(u) =

(
φL+1(u1), · · · , φL+1(udout )

)T . We get
∂zL+1

j

∂zL
i

= φ′L+1(W LzL)i wL
ji with

φ′L+1(u) =
(
φ′L+1(u1), · · · , φ′L+1(udout )

)T .

We easily deduce : ∂e(fθ(x),y)
∂wij

=
∑

j
∂e(fθ(x),y)

∂zL+1
j

∂zL+1
j

∂wL
ij

=
∑

j δ
L+1
j

∂zL+1
j

∂wL
ij

J. Rynkiewicz Introduction to Deep Learning
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Matrix expression of the derivative computation

We can summarize the computation of the derivatives with matrices for an MLP
with N layers :

Propagation :
Z L+1 = φL+1(W LzL), L = 1, · · · ,N.

Back-propagation, with for two vectors u, v of Rd ,
u × v = (u1v1, · · · , ud vd )T :

δL =
(

W LT
δL+1

)
× φ′L(W L−1zL−1), L = N, · · · , 2

et δN+1 :=

(
∂e(fθ(x),y)

∂zN+1
i

)
1≤i≤doutput

× φ′L+1(W LzL).

Computation of the gradient for L = 1, · · · ,N :(
∂e(fθ(x),y)

∂wL
ij

)
1≤i≤dout , 1≤j≤din

= δL+1 ⊗ Z L,(
∂e(fθ(x),y)

∂wL
i0

)
1≤i≤dout

= δL+1.

where ⊗ is the external product for two vectors : v ∈ Rn, u ∈ Rm,

v ⊗ u =

 v1u1 · · · v1um
... · · ·

...
vnu1 · · · vnum


J. Rynkiewicz Introduction to Deep Learning
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Application to elementary MLP

In our basic example, N = 2 and if we code y on the simplex : 0 :=

(
1
0

)
and 1 :=

(
0
1

)
we get :

z1 =

(
x1
x2

)
.

z2 = tanh(W 1z1).

z3 = softmax(W 2z2).

δ3 =
(
z3 − y

)
× z3 ×

(
1− z3).

δ2 =
(

W 2T
δ3
)
× φ′2(W 1z1) =(

W 2T
δ3
)
×
((

1
1

)
− z2

)
×
((

1
1

)
+ z2

)
.(

∂e(fθ(x),y)

∂w2
ij

)
1≤i≤2, 1≤j≤2

= δ3 ⊗ z2,
(
∂e(fθ(x),y)

∂w2
i0

)
1≤i≤2

= δ3

(
∂e(fθ(x),y)

∂w1
ij

)
1≤i≤2, 1≤j≤2

= δ2 ⊗ z1,
(
∂e(fθ(x),y)

∂w1
i0

)
1≤i≤2

= δ2.
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Modular approach of derivatives computation

We see that, to compute the derivative of the cost function with respect to the
weight, it is sufficient to propagate the zL to backpropagate the δL and perform

the computations inside the layer. We can thus build a complex network by
stacking the layers and sending the results of the calculations of a layer to the

possible following and previous layers.

d e(f
θ

( x,y))

 dW
N

d e(f
θ

( x,y))

dW
L

d e(f
θ

( x,y))

dW
1

z
1

z
L

z
N

δ
N+1

δ
L+1

δ
2

Couche 1

Couche L

Couche N
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Differential optimization

For each pair (xt , yt ), we can compute, thanks to the backpropagation
algorithm, the derivatives

(
∂et
∂θi

)
, thus the gradient vector : ∇et . We can use

this gradient to estimate the optimal weights in several ways In all cases, we
randomly choose θ(0) (the components of θ(0) must be non-zero).

1 By a stochastic gradient descent (on-line).

∀t ∈ {1, · · · , n} update the parameter vector :

θ(t + 1) = θ(t)− εt+1∇et+1

2 By a batch gradient descent (off-line). This method is no longer used in
Deep Learning because the number of parameters and the number of
observations is too large.

∀l ∈ {1, · · · , L} update the parameter vector :

θ(l + 1) = θ(l)− εl+1
1
n

n∑
t=1

∇et

3 By a mini-batch gradient descent of size B (between on-line and off-line).
This is the preferred method for Deep Learning because it allows to
parallelize the computations.

∀l ∈ {1, · · · , L} update the parameter vector :

θ(l + 1) = θ(l)− εl+1
1
B

t=l×(B+1)∑
t=l×B+1

∇et

J. Rynkiewicz Introduction to Deep Learning
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Stochastic algorithm
θ(l + 1) = θ(l)− εl

1
B
∑t=l×(B+1)

t=l×B+1 ∇et

This algorithm is the standard Deep Learning algorithm.

If the sequence εt checks :

∞∑
t=1

εt =∞ et
∞∑
t=1

ε2
t <∞

and (θ(l))l∈N stays bounded.

The stochastic gradient algorithm converges almost surely to a local
minimum of θ 7−→ C(θ) = E [e(fθ(X),Y )] when the number of
observations increases towards infinity.

In practice, εt remains constant over tens of iterations and decreases
slowly while remaining greater than 10−6.

As we do not have an infinite number of observations, the algorithm has to
go over the same data several times.

J. Rynkiewicz Introduction to Deep Learning
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Acceleration of the stochastic gradient

Momentum : This method stores the update at each step and computes
the next one as a convex combination of the gradient for the new
mini-batch and the previous modification{

∆(l + 1) = α∆(l) + (1− α) 1
B
∑t=l×(B+1)

t=l×B+1 ∇et
θ(l + 1) = θ(l)− εl+1∆(l + 1)

Adagrad or Adam : These algorithms improve the stochastic gradient
method by automatically determining a learning rate for each parameter.

Let us write G =
∑k

1 ∇et (∇et )
T the estimated covariance matrix of∇et .

The diagonal of G will be Gj,j =
∑k

t=1∇e2
t,j , which is updated after each

mini-batch.
Let us write ε the step of the gradient algorithm. Each parameter will be
updated according :

θj = θj −
ε√
Gj,j

(∇et )j

Large parameter updates are mitigated while small changes are made with a
higher learning rate.
Adam is an adaptation of Adagrad with an exponential forgetting of the old
gradients.
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Batch algorithm
θ(t + 1) = θ(t)− εt+1

1
n
∑n

t=1∇et

If εt+1 is small enough this algorithm is sure to converge to a local minimum of

θ 7−→ E [C(fθ(X),Z )] .

The LM is only applicable to quadratic cost functions. It performs better
than BFGS if the MLP has only one output.

In the multidimensional case the BFGS is generally faster.

Both algorithms provide an estimate of the inverse of the Hessian matrix.
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Batch algorithm
θ(t + 1) = θ(t)− εt+1

1
n
∑n

t=1∇et

If εt+1 is small enough this algorithm is sure to converge to a local minimum of

θ 7−→ E [C(fθ(X),Z )] .

Acceleration
Modification of the descent direction by estimating the inverse of the Hessian.
The two most popular algorithms are BFGS and Levenberg-Marquardt (LM).

The LM is only applicable to quadratic cost functions. It performs better
than BFGS if the MLP has only one output.

In the multidimensional case the BFGS is generally faster.

Both algorithms provide an estimate of the inverse of the Hessian matrix.

These methods are generally no longer suitable for Deep Learning because
the number of parameters and the number of observations are very large.
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The overfitting

Stochastic optimization algorithms work well in practice. They often
converge to a very good local minimum of the cost function.

As these models have many parameters, there are often more parameters
than observations, so we must be careful about overfitting.

Overfitting corresponds to a too close or exact fit to a particular data set.
The model learns "by heart" the training data and cannot generalize on
new data.
Formally :

The algorithm minimizes “very well” θ 7→ Cn(θ) = 1
n
∑n

t=1 e(fθ(xt ), yt )

but the chosen θ̂ will give a big generalization error E(e(fθ̂(X),Y )).
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An example of overfitting
White noise

We draw a sample ((xt (1), xt (2), yt )1≤t≤30, where (X1,X2,Y ) ∼ N (0, I3) and
we try to predict the variable Y according to the couple (X1,X2). Since Y is inde-
pendent of (X1,X2) and centered, the best prediction is zero : E (Y |X1,X2 ) =
0.

library(nnet)
library(rgl)
set.seed(1)
x <- matrix(rnorm(60),30,2)
y <- matrix(rnorm(30),30,1)
res.mod <- nnet(x,y,size=10,nbstart=10,maxit=1000,linout=T)
xp <- runif(10000,min=min(x[,1]),max=max(x[,1]))
yp <- runif(10000,min=min(x[,2]),max=max(x[,2]))
matp <- cbind(xp,yp)
mod.pred <- predict(res.mod,matp)
plot3d(c(-2,-2,2,2),c(-2,2,-2,2),c(20,20,-20,-20),type="n",axes=F,xlab="",ylab="",zlab="")
points3d(xp,yp,mod.pred,col="green")
spheres3d(x[,1],x[,2],y,radius=0.5,col="red")
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Another example of overfitting (1)
Still a white noise

Now, we draw an i.i.d. sample of large dimension and size :
((Xt ,Yt )1≤t≤100000, où (Xt ) ∼ N (0, I2000) and Yt ∼ N (0, 1), is
independant of Xt . We try to predict the variable Y according to the
variable X . Since Y is independent of X and centered, the best prediction
is zero : E (Y |X ) = 0.

We train five different neural networks. All networks have two hidden
layers and ReLU activation functions : φ(x) = max(0, x). These models
differ in the number of hidden units on each layer : from 23 to 27.

Each model is optimized by the stochastic gradient method, with a
mini-batch of size 64, a momentum of 0.9 and a constant step of 0.01.

To evaluate the overfitting, we evaluate the estimated model on 100000
test data independent of the training data.
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Another example of overfitting (2)
Still a white noise

The results are as follows :

TABLE – Comparison of the different architectures

Nb Nb de data set mean square error
hidden units parameters

23 16089 learning 0.72
test 1.31

24 32305 learning 0.47
test 1.67

25 65121 learning 0.15
test 2.62

26 132289 learning 0.06
test 2.16

27 272769 learning 0.02
test 1.61
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Regulation of the MLP

We need a way to control the modeling power of the MLP.

We limit its complexity, but we must be careful to let it be able to model a
possibly very complicated problem.

A compromise is sought between complexity (variance) and modeling
(bias).

During deep network learning

Weights decay

Drop out

Batch normalization

Early stopping

Mixup

Selection of the best model

Best error on a validation set (hold out).

This method is almost optimal if enough data are available for the
classification.
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